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* 4.1.1. Introduction ' . |
" X-rays have a wavelength of the same order as the inter-atomic spacing

in most crystalline substances. X-ray diffraction i§ thus an ideal way of
probing the cell structure of a crystalline substance.

wq.1.2. - Theory

nt, we mainly consider crystals whose basic or unit cell

‘interpretation easier — the method, however, is most powerful and can
be applied generally to all types of crystal structure. There are three
basic types of cubic cell — the simple cubic, the face centred cubic and
the body centred cubic. ' f S

The differences in these three types are shown in figure 4.1:

Figure 4.1: Cell Structures for Various Crystal Types: ‘») Simpl¢ Cvic, (b)
Face Centred Cubic (FCC}, ard (c) Body Centreg Cubic (3CC)
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An interesting variant occurs when a cubic crystal is composed of ¢qual
~ L] f
numbers of two types of atoms. The common salt (sodium chloride) 15 a

0. Pharm. Eighth Sem (Pharmaceutical Auulysis-”l) Py

good example and is shown in figure 4.2:

Another interesting variant is diamond (silicon has the same structure),
Although complicated to draw, it is most easily visualised in terms of §

oooooooo

--------------------

) D ' Sodiunl.

O Chlorine

Figure 4.2: Cell Structure for Crystals of the Sodium Chloride Type

slices through the unit cube. These are shown in figure 4.3:

Figure 4.3: Cell Structure for Crystals of the Diamond T
Slice, (b) a/4 from Top:Slice, (¢) a/2 from Top slice, and

(b)

(c)

(d

ype: (a) Top and Bottom
(d) 3a/4 from Top Slice.

»
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e .wchniquc in this experiment is to use metal samples in the form of
dres composed of small crystals orientated in every direction-

he starting point in our reasoning is the Bragg’s scaneﬁng la\.av whi_ch
ate tha: «-rays will constructively i(n_t_gr_f_'gge;_, (and form a high intensity
¢ on he film) when x-rays scattered from neighbouring planes have
th differences differing by an integral number of wavelengths. Figure

¢ illustrates this:
& :

Figure 4.4: Bragg’s Reflection of X-Rays from a Family of Planes
i Y st o

¢ extra path length is 2d ?sine = n\; n is the order of the reflection.

Ihe 6 is different from the normal angle of incidence usually defined in
?ptics. For first order reinforcement, therefore, we have:

A
v e S
sinf=—- N

ere are, however, many families of planes of various inclinations
hich can be drawn through the scattering centres. Each family of
' lanes consists of an almost infinite set of members, all parallel and all

L,,’gajkf spaced.

ach family of planes is characterised by its Miller indices (h, k, 1)
hich are the inverses of the intercepts on the axgs of the plane closest
the 9_rigfﬁmsﬂ hus the Miller indices (0, 0, 1) would
scribed a family of planes all parallel with the xy plane and all

parated by the same distance a. For a general {amily of planes (h, k, 1)
is easy to show that:
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f : > 5 A .
Sitl:(}:L-?:'} (h‘+k‘+l’)=(.’;ﬂ N

2,
Clearly N must be an integgg. Equatiop, 3y
orders of reflection for N=1? In Crystalq raph d
usually given in the_‘l_qwest terms., 1€, thej; grealy
should be 1. In X-ray diffraction we est

0
o tn allow i

break this rule to accommodate a“‘omatica“y ki he

reflection. 8

oft

For example, a first order reflec

tion from (2,
considered as a second order reflecti

» 0
onfrom(l,o,o) &

Plane. b

Whenever an x-ray photon hits a crystal with the correct ap

incidence constructive interference will occur fro
family of planes (h, k, 1) forming a reinforced sca
of deflection of the beam is obviously 20).

gle of
m the correspondip, e

ttered beam (the ang|ef

Since we are dealing with a polycrystalline metal Specimen containipg I
many crystals of all possible orientations, the scattered beams will fory
a cone (rather than a bright spot, with an opening angl. 20 with respegl
to the incident beam direction.

i ipti he Film for a Polyerystalline
i .5: Formation of Elliptical Arcs on t
Figure 4.5 e
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xperiment utilises a strip of film wrapped
(covered with an image intensifier) and.

The camera used in this e
cound the inner Surface
11”]05“!‘.1 the specimen,

L =

i gs being seen if the screen is flat
€ Incident beam direction, we sec ellipsis or two
ch value of N. The aim is to ascribe a value of N to
fy.ch ring seen, thus allowing one to estimate the basic cell size, a,

| (pmvidetjj )the wavelength of the x-ray is known and the value of sin’6 is
';1]culatc e

] instead of circular rip
'} .pendicular to th
atjcal arcs for ea

or simple cubical crystals all values of h, k and | are allowed. All N,
owever, a.€ not allowed as numbers such as 7, 15, 23, 28, 31 and 39,

etc.. cannot be made up from the sum of thiee squares.

‘Ifor face centred crystals we add extra planes due to the add.iiunal
scatterers in the middle of each face. This results in some cestructive
interference; so that some further N values are missing.

Let us consider two slices through a face centred crystal perpendicular
to the z axis as shown in figure 4.6:

0 0 €]
=\
Slice 1 b T
St Q ¢ a o}
Slice 2 l Slice 1
......... o -

Slice 1 0 &

s Bl — G——p
A B ] ©

Figure 4.6: In FCC Type of Crystal, the Two Horizontal Slices of the Unit
Cell are Just a Different Selections from the Same Pattern of Atoms

The two horizontal slices (slice 1 and 2) have equal numbers of atoms
2) per unit slice area but are separated by half the unit cell size (i.e., by
/2) so there will be destructive interference causing suppression of the
:flection hk] = 001 (N = 1). By extension this will mean suppression of
kl =010 and hkl = 100. If this argument is applied to other planes, the
*Sult is that only cases when hkl are all odd and where hkl are all even
llewed (i.e., h, k and 1 must have the same parity).
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“44.2.1.  Bravais Lattices

Aattices. In 2D (Tigure 4.9), these are — the oblique, rectangular, cen .

18 " . Pharm, Eighth Sem ("harmaceutical Anglysis. mnpe

An interesting effect occurs in crystals like sodium chloride. A Dlaf
111 is entirely occupled by sodium ions and the next 111 plane B
entirely occupied by chloride jons. This pattern is repeated through (F
crystal and it causes destructive interference to oceur, The interferer,

i only partially destructive in NaCl as x-ray scattering 1§ stronyf

from the chlorine atoms which have a higher atomic number (1}
sodium,

The result is that the line N = 3 (due entirely to hkl = 111) is weak
NaCl. The N =3 line is extremely weak (effectively missing) in cryst
like NaF and KCI because the component atoms are near neighbours;

the periodic table. As a general rule, if the planes have atoms of nef
equal Z then we see lines with h, k and 1 all even.

Diamond and silicon lattices have a face centred arrangement of atopf
with four extra atoms in the cell, arranged as already shown in figu g
4.3. The two exra planes cause destructive interference with hkl = 2
(N = 4). A similar interfereace occurs with hkl = 222 (N ='12), with hig
=420 (N = 20) and N = 30, 36 and 44. As a consequence, the allowck
interval_ between successive values of N goes 5, 3, 5, 3, etc.

Finally the body centred cubic crystals; destructive interference it

caused by the atom in the unit cells centre and produces a simple resulf
— N has to be even.

e

{Fraditionally all the lattices in crystallography are called ﬁBrai/ais

rectangular (rhombic), square, and hexagonal (triangular).

operatiofi§ involving translations should be considereﬂ they includs

- leorﬁ lide reflections and SCreW_axes (rotation§ and

inversion-rotations)

Pure translations can be easily understood, while the other two
eqyuivalent to a point symmetry operation plus some fiactions
lattice translation, are more complex. Glide reflections are usuall)
related to transiations o@r where t is the lattice vecto
along the glide plane; while N-fold screw rotation is related

i

e \
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(ranslation vectors|t’ = p\/N\ where p is an integer number smaller
an N, and 1 is the translation vector along the rotation axis
(figures 4.7 and 4. 8):

v a=2tn . 7

Figure 4.8: Schematic Diagram of a
Screw Axis

Figure 4.7: Schematic Diagram of a
Glide Reflecting Plane

Centred lattices dre associated with added symmetry operations, such as
glide reflections; screw axis operations, etc. In 2D space, the additional
operation of| th¢, centred lattices is-ebvious — when compared with the
non-centred te¢tangular lattice, the 2D tentred on a set of parallel
glide reflectiog lines (a plane changes into a line in the case of 2D), and
the translation vector | equals a/2, b/2, so its symmetry is different frcm
the non-centred lattice (figure 4.9):

Figure 4.9: 2D Bravais Lattices: (a) Oblique; (b) Rectangular;
(¢) Rhombic; (d) Square; (¢) Hexagonal.
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Although in 3D space the symmetry of lattice is more complex than thay
of 2D space, the situation is quite similar. 14 Bravm§ lattices are divideqd
into the 7 crystal systems - Triclinic, menoclinic, orthorhombic,
tetragonal, rhombohedral, hexagonal and cubic. The rhombohedral point
group can be considered as a special type of centred hexagonal lattice.|If

we choose this viewpoint, the 7 ¢

4.10);
Crystal : Type of‘Lmiccs Related Point
System P | C F R Group
Triclinic
azbzc
azB=yz90 b
Monoclinic
azbwc v
a=y=90 2,m, 8
B=90 g &
Orthorhombic w 4 222, 2mm
a*b;e ‘-. T v ﬂ'-,."' : 1
a=B=y=90 A Ll -2—3—2-(mmm)
p :ﬂ 4 r':.‘.__" r3 m m
Tetragonal - 4
azb#c 4 4’;;422'
a=pB=y=90 !\_f.': -—
Pty ! 4mm, 42m,
. E
) 3 —1(4/ mmm)
. m m
Hexagonal | _ p 3 6
a=bzc ﬁ 1% IR I
Crt m m
a=p=90 ; -
o on 622,6mm, 6 2m,
; e i-—?--z— (6/mmm)
mmm
Rhombohedral
a=b=c 3,3, 32,3m,
a=p=y 2
# 90 3—(3m)
m
Cubic 233
o - ‘!W 23, ;3(3m).
o= B_.-_'- Y ' g -
-0 2 g%? 432,33m,
ii—z—(mgm)
m m

P (Primitive), I (Body Centre), C (Bottom Centre), F (Face Centre). R {Rhombohedron)

Figure 4.10: 14 Kinds of Bravais Lattices

rystal systems are reduced to 6 ( igure

>
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¢ Bravais lattices is carried-out by the differences
4.\-

1 \mmJT\ S0 thg’t\ of the lattices ccincide with the translation
ufvtﬁ‘ i.e.. the groups of pure translations.

e

{2.2. Space Lattice and Unit Cell Y

\{ Lmtal“ are polyhedra consisting of regularly repeating arrays of
ms, molecules or ions which are the structural units. A crystal is a

rwot geneous portion of a solid substance made of regular pattern of /
s sctural_enits bonded by plane surfaces making definite angles with
each h othér.fThe geometrical al form consisting only regular array of
oints i SPACE S called a lattice or

space lattice orlit can be defined as
. .n arf@y of points showing how molecules, atoms or ons are arranged in

gifferent sites, in three-dimensional space. Figure 4.11(a) shows a space
iarﬁcﬂ Bl

A space lattice can be subdivided into a number of small cells
unjt cells. It can be defined as the smalle3rTepeating urit in space lattice

which, when repeated over and over again, results in a crystal of the \/
given substance or it is the smallest block or geometrical figure from

which entire crystal can be built up by its translaticnal repetition in
~ three dimensions.

A unit cell of a crystal possesses all the structural properties of the given

crystal. For example, if a crystal is a cube, the unit cell must also have
its atoms, molecules or ions arranged so as to give a cube. Each unit cell

has three vectors a, b and ¢ as shown in figure 3.3(b). The distances a, b
and c are the lengths of the edges of the unit cell and angles a, B and vy
are the angles between three imaginary axes OX, OY and OZ

(b)Unit Cell
L F.gure 4.11: Space Lattice and a Unit Cell (shown by Solid Lines)
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4.1.2.3.  Identification of Lattice Pf)mtlt'nseal?rﬂt]::l;:le: Yy
T ‘dc.:si‘gnatc the location of any point In 64 oh ’cell oordlnat
g;:‘,(em is set up with origin at one corner O and

X,
i f the cell. These axes g
coinciding with a, b, and ¢ edges © 6 nf

necessarily mutually perpendicular.

The position of a point in the cell is specified by giving i
coordinates as fractions of the unit-cell le_ngths 2, l?, and c. T!ms,‘
point at the origin is 000; the interior lattice point in an I lattice isy
L1

2°2

/4'.\1.2.3.1. Miller Indices

~ The orientation of a crystal plane is described by its Miller indice
(hkl), whilrare obtained by the following steps: }
1) Find the intercepts of the plane on the a, b, ¢ axes in terms of
multiples of the unit-cell lengths a, b, c;

2) Take the reciprocals of these numbers;

3) If fractions are obtained in ste
smallest integer that will gi

negative, one indicates this
index.

P 2, multiply the three numbers by the
ve whole numbers. If an intercept is
by a bar over the corresponding Miller

Crystal system  Primitive P)

B

b L G e e i
R O St ey oA R
05, T Bk, TR DPR T SentY e

Sy PR
RN

Body-centred (I)  Face-centred (F) End-centred ((f)

|
|

‘Mi"

N
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ay ey ﬂr{’
Orthorhombic \ ' {® !
azb #c . ® :I"‘,' N E
o= B = Y B 900 \‘ : \
b ‘ \ ; » o
a

g

R

Hexagonal
a=b z¢ =
a=p=90°y=1200
// a
X\ a :

Trigonal (Rhombohedral)
a=h = c ., a
90°2a=B=y<]20° 5

Monoclinic
azbzc n
g a=v=90°, B>90° ¢ s

LY -\ \

-Triclinic -
a;b:c
o gB=y

Figure 4.12: Unit Cells of the 14 Bravai: Lattices

For example, the shaded plame labelled'r infigure 4.13 intércepts

the a axis at % and the b.axi-s-at--gand lies parallel to the ¢ axis
é

~ (intercept at ). Step 1 gives %,-;—,oo. Step 2 givqs 2,20, Hgnce the
Miller indices are (220). The plane labelled s has Miller indices
(110). The plane labelled t has intercepts —32-a,—2-b, w; step 2 gives
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Wl

W o

0, and the Miller indices are (220). Plane u has intercepts 24

2b, «: So st 2'veb——10 '
2b, «0; So step 2 gi 517 , and step3gwes(110). Also shown

are a (111, plane and (100) planes. The hi

; index h of a plane, the closer to

gher the value of the Miller
plane.

the origin is the a intercept of the

¢ \ "!
F DA odmi
AVE
N . ;ﬁb.@ Y

c

, (a) (220) planes

I i
(b) (100) planes

; (¢) (111) plane

Figure 4.13: Two Unit Cells are Shown in (2) and in (b); One is Shown in (c)

In general, the miller indices of a plane can be expressed as (hkl) where

/ h,k,I refer to the reciprocals of the intercepts expressed in units of the
lattice distance, i.e.,

= " )
"~ Intercepts of the plane along x — axis P
k= ; ; YO
Intercepts of the plane along y - axis
l=— - , ee-:(6)
Intercepts of the plane along z - axis

/' The miller indices (hkl) of any plane give the orientation of the plane in
;/ the crystal with reference to its three axes.
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,.4.-},_:,_". 2. Separation of Planes
\

t"“"- Miller indices are very usefy] fo
janes. The sepc-ation of the (hk0) pla
lt-,gurc 1.40 is given by

r expressing the separatiun of
nes in the square lattice shown in

| _}12+k2
dlzmku a’®
a pop
0 wo= T e i

By extension to three dimensions, the separation of the (hkl) planes of a
cubic lattice is given by

I W +k? 412

dizm a’
a

The corresponding expression for a general orthorhombic iattice is the
generalization of this expression:

2 B 2 ‘
: “_‘h_-."*'k o, O oner il

2 2 _2- 2
da @ b° ¢

' T\
By

:
\ ey

Figure 4.14: Dimensions of a Unit Cell and their Relation to the Plane
Passing through the Lattice Points

A-/ . .
437 Interplanar Spacing in Crystal System
Interplanar spacing refers to the magnitude of distance betweeﬁx t\aﬁ?l
adjacent and parallel planes of atoms. Consider cubic un’t cell wi

lattice constant ‘a’. The interplannar distance between two adjacent and
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0) as shown in figu
= p. (dpa = @ means inter
planes having Mi

parallel planes (1 0

J,/ constant, ‘a’, i.c., dyoo
two parallel and adjacent
a):

ller indices I, K, 1 is equal to

A( &

Figure 4.15: Interplanar Spacing in Cubic Crystal

Similarly
do1o=dgo; =2

Interplanar spacing is a function of Miller indices (h, k and 1) and
lattice parameters. Planes with large interplanar spacing have low
indices and high density of lattice points and planes with small
interplanar spacing have high indices and low density of lattice
poir;éj It is quiet obvious that the most widely spaced atomic planes
are those spaced at intervals equal to lattice parameter a’, i.e., planes
(100),(010)and (00 1) are most widely spaced having interplanar
distance equal to ‘a’.

/4'.1.4. Relation between Interplanar Spacing ‘d’
and Lattice Constant ‘a’ for Cubic Unit Cell

Consider a cubic unit cell with edge length ‘a’ and plane XYZ with
Miller indices h, k, I. The plane XYZ makes intercept of OX, OY and
OZ on x, y and z axes respectively as shown in figure 4.16.

A plane parallel to XYZ passes through origin ard is at a distance ‘d’
from plane XYZ. A normal OD is drawn from O on plane XYZ such

thet OD =d. A normal-OD makes angle o, with X-axis, 8 with y-axis and
¥ with z-axis. :
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\*ow. &
E OY =, OZ =-.—'
) k l

0X*},

._O_-!-)—ﬂ-g-sgl—‘- B:.—Q—?-—-
B ox a g oy
h
“oz a a
1
\We know that cos® a + cos’ B
+COSIY=I

dk

dl

dh

——

) -

v

a
d=
Jh‘ +k?+P

2 2
MOk
ﬂ:-(h’+k‘+|’)=1
&

2
3 a

&=

h?+k?+1?

Clearly interplanar distance
‘d’ is inversely proportional
to the indices h, k, | of the
plane

For tetragonal:
2 8 2
IR _hs 81

2
a

* For orthorhombic:
I hz kI
e g *

dy, a

For hexagonal:

i 4[h’+hk+k’

di 3

127

Z

Figure 4.16
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4.1.5. Structure Determination h): ]ﬁ;:}if:y [:_Iqmcﬁ() |

h' i:\\-'cll known that, for ViSib!C-CICL“-)’_di:]ensioz::I ‘a“()‘” to .
diffracted, the spacing between lines 1n a 1."“’” for llght 35623'”8 My, &
be of the same order as the wavcleﬂ.gih r"_nf’“b i lgl ( g ‘780.03\]_; |
The same principle holds good for d,.{Tractlon Yy ne llr.ee-] '[mensmn;ﬂ |
grating of the periodic array of atoms in crystals. The typlga _‘"‘embmjc‘_

5pacing in crystals is 2-3A. So, the wavelength of the radiation useq for
crystal diffraction should be in the same  range. X-rays hﬂve 4
wavelengths in this range and are, therefore, diffracted by crystals, T

property is widely used for the study of crystal structures.

4.1.6. Diffraction of X- Ray by Crystals

\ X-Rays are electromagnetic radiatious of short wavelength of the orde,
of 0.01nm. The ‘vavelength is comparable with the spacing of atoms i, |
cry‘ﬁﬁ@his led M. Von Laue to suggest that crystals can act as three |
dimensional gratings to X- Rays.

I
-~

In 1912, Max von Laue predicted that since the distances between §
particies in a crystal are of the same order of magnitude (=10 cm) g
the wave length of X-rays, the former could be used as a 3-dimensiona] :
diffraction grating and thus if a beam of non-homogeneous X-rays were |
passed through a crystal, a diffraction pattern would be observed. The
expel.ments carried out on various substances verified Laue’s prediction
in every respect. The diffraction- pattern can be recorded by placing a
photographic plate behind the crystal ps shown in figure 4.17.

On developing the film, one observes a series of spots arranged in some
symmetrical way around th. intense central undiffracted beam. The
arrangement of these spots (known as Laue spots) is highly

Tsti € structural arrangement of the crystal. From the
position of Laue spots, it is possible to calculate the size and shape of

the unit cell. However, the actual analysis of the Laue diffraction patt
is highly complicated and difficult,

Polychromati~
[ ] o ®
X-rays . \ e o
- .
Crystal A
Photographic plate Laue spots
Figure 4.17: Lane Diffraction Pattern
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4_1,6.2-\45"‘88’8 Equation

vhen electrons MOving at high speed,, :

gnall percentage of their kineric energy ?;ccg::rve::e% t::nz T:Ismﬁ;t':
2y emitted by 1€ target consist of 2 continuous range of waiciengths
slled white radiatio by analogy with white light consisting of a range
Ofwavelengths The minimum wavelength in the continuous spectrum is
gverstly_proporfional 1 the ‘applied voltage which accelerates the
decto”s WHIdS the target. Ifthe appiied voitage s sufficiently high, i
pddition 10 the “’h‘_‘e radiation, a characteristic radiation of a specific
wavelength and high intensity is also emited by the wﬁm

radiatioq emitted by a molybdenum target i
of radiation as illustrated'in Tigure 4.15. o e

129

8!-

(=)

&
T

Relative intensity —— 5.
|

0.0 .02 04 06 08 1.0 12 4 16
B Wavelength, A .
Figure 4.18: Spectrum of X-Rays Emitted from a Mol;bdenum Target at 35KV

In spectroscopic notation, the characteristic radiations are named K,,
Ks, Lg, ete. K, radiation has a high intensity and is commonly used in
tiflraction studics,}The wavelengths of this radiation for typical target
netals are given in table 4.1:

Table 4.1: Wavelengths of K, Radiation for Typical Target Metals
Target Metal Mo Cu Co Fe Cr
Kowavelength, A | 071 154 179 194 229
nm | 0.071 | 0.154 | 0.179 | 0.194 | 0.229 |

—————

L~
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A beam of x-rays directed at a crystal interacts with the elect-ons of the
atoms in the crystal. The electrons oscillate under the impact ang
become a new source of electromagnetic radiation. The waves emitted
by the electrons have the same frequency as the incident x-rays, The
emission is in all directions. As there are millions of atoms in a crystal,
the emission in a particular direction is the combined effect of the
oscillations of electrons of all the atoms. The emissions will be in phasg
and reinforce one a'nother onl.y Incertain specific directions, which
depend on Phe direction of the incident x-rays, their wavelength as well
as the spacing between atoms in the crystal. In other directions, there is
des.tructwe mterference“of the emissions from different sources. The
ez.151est way to visualise the diffraction effects produced by the three-
dimensional grating provided by the crystal is to consider the Bragg law.

S

0 B. Pharm. Eighth Sem (Pharmaccutical Analysis-111) Py

In figure 4.19, a set of parallel planes in a crystal is shown:

\.\
e \\f\ - 910_ eﬂ //
<

Plane 2 /

dsin© /

Figure 4.19: lilustration of the Bragg Law g

Plane 3

@ beam of x-rays of wavelength A is directed towards the crystal at an

angle 0 to the atomic planes. In Bragg law, the interaction described
above between x-rays and the electrons of the atoms is visualised as &
process of reflection of x-rays by the atomic planes. Tiis is an
equivalent description of the diffraction effects produced by a three-
dimensional grating. The atomic planes are considered to be sem"
transparent, i.e., they allow a part of the x-rays to pass through and
reflect the other part, the incident angle 0 (called the Bragg angle) being
equal to the reflected angle Referring to figure 4.19, there is @ paﬂ”l
difference between rays reflected from plane 1 and the adjacent plan*
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o the crystal] The two reflected rays will reinforce each other, only
;vhen this E_Eil-h _difference is equal to an integral multiple of the
3 avelength. If d is the interplanar spacing, the path difference is twice
he distance d'sin 0, as indicated in figure 4.19. The Bragg condition for
eflection can therefore be written as:

pA=2dsin® ... (10)

where, n=an integer
A = wavelength of the x-rays used.

A first order reflection is obtained, if n = 1; 2 second order reflection
occurs if n =2, and so on.

As sin 0 has a maximum value of 1, for a typical value of interplanar
spacing of 2A, equation (10) gives the upper limit of A for obtaining a
first order reflection as 4A. There will be no reflection if A is greater
ihan 4A. A can be reduced indefinitely, obtaining reflections from other
sets of planes that have spacing less than 2A as well as an increasing
number of higher order refiections. A very small wavelength of the
order of 0.1A is not necessarily an advantage as it tends to produce other
effects such as knocking off electrons from the atoms of the cryst~l and

getting absorbed in the process. The wavelengths of the K, radiation
given in table 4.1 for typical target metals lie in the right range.

The B-1gg equation can be used for determining the iattice parameters
of cubic crystals. Let us first consider the value that n should be
assigned. A second order reflection from (100) planes should satisfy the
following Bragg condition:

22 =2dgn SIn O
Or A= leO IO vt T 4T e (1 1)

Similarly, a first order reflection from (200) planes should satisfy the
wollowing condition: :
A=Dhpsin® L 4 L masts (12)

The interplanar spacing of (100) planes is twice that for (200) plarzs. So
equations (11) and (12) are identical. For any incident beam of x-rays,

the Bragg angle 6 would be the same, as the two sets of planes in
question are parallel. As eouations {11) and (12) are identical, the two
reflections will superimpose on each other and cannot be distinguished.
By a similar argument, it can be shown that the third order reflection
from (100) planes Wwill superimpose on the first order reflection from
(300) planes. In view of such superimposition, there is no need to
consider the variations in n separa..ly; instead, we take n to be unity for
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< such as (100), (200), (30y

arallel sets of plﬂfl' 55 » IR |

(400), etc. For exampleé, in E'lt Cr_l{’s:;l ‘;f;yi;uzs?;:,;g g;e? E;OEG‘. ‘

200) pl ith atoms on It , . ;|
f-eﬂclﬁ%:n th‘:x’;lly refers to the second order reflection from (100?

planes.
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all reflections from P

v /4.1.6.3.  Powder Method d experimental technique for

The powder method is a widely use o : '
i — tures. It is highly suitable fo™

m stal structures. 1t 15 NS O
JRRILS & rinialiog 01 & of the structures of crystals of high -

identification and for determination -~ 8l
symmetry. Here, a monochromatic x-ray beam, usually of K, radiation,
is incident on thousands of randomly oriented crystals In powder form,

The powder camera, called the Debye—Schel'l‘el' camerg3 FOﬂSlsts of _:-: |
'l@ricaLcassett:, with a stripW gghic film po sxt:o.ned aroun;_ ,
a: circular periphery of the cassette. 1he pow er specimen 15 p!aced af
the centre of the cassette ina capillary tube or pasted on a thin wire. The
tube, the wire and the paste material mist be of some non-diffracting
substance such as glass or glue. The x-ray beam enters through a small
hole, passes through the powder specimen and the unused part of the
beam leaves through a hole at the opposite end. The geometry of the
powder method is illustrated in figure 4.20:
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Figure 4.20: Geometry of the Powder Method
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‘Consider a set of parallel crystal planes making an angle 6 with the

reflection. By virtue of the large number of randomly oriented crystals
in the powder, there are a number of possible orientations of this set of
planes in space for the same angle 0 with the incident direction.| So the
reflected radiation is not just a pencil beam like the incident one;
instead, it lies on the surface of a cone whose apex is at the point of
«<ontact of the incident radiation with the specimen. Also, the interplanar
r spacing d being the same for all members of a family of crystal planes,
they all reflect at the same Bragg angle 6, all reflections from a family
lying on the same cone.

After taking n = 1 in the Bragg equation, there are still a number of
combinations of d and 6 that would satisfy the Bragg law. For each
combination of d and O, one cone of reflection must result and,
therefore, many cones of reflection are emitted by the powder specimen.
If the reflected cones were recorded on a flat film placed normal to the
exit beam, they will be in the form of concentric circles. In the'powder
camera, however, only a part of each reflected cone is recorded by the
film strip positioned at the periphery of the cylindrical cassette. The
recorded lines from any cone are a pair of arcs that form part of the
circle of intersection. When the film strip is taken out of the cassette and
spread out, it looks like figure 4.20b. '

The angle between a reflected line lying on the surface of the cone and
the exit beam is 26. Therefore, the angle included at the apex of the cone
is twice this value, 40, figure 4.20a. When the Bragg angle is 45°, the
cone opens out into a circle and reflection at this angle will make a
straight line intersection with the film strip at the midpoint between the
incident and the exit points in figure 4.20b. When the Bragg angle is
greater than 45°, back reflection is obtained, i.e., the reflected cones are
directed towards the incident beam. Bragg angles upto the maximum
value of 90° can be recorded by the film of the powder camera, which is
not possible on a flat film placed in front of the exit beam.

The exposure in a powder camera must be sufficiently long to give \
reflected lines of good intensity. The exposure time is usually a few
hours. After the film is exposed and developed, it.is indexed to
determine the crystal It is easily seen that the first arc on either
side of the exit point corresponds to the smallest angle of reflection. The
pairs of arcs beyond this pair have larger Bragg angles and are from

incident direction. When this angle satisfies the Bragg equation, there is
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planes of smaller spacings, recall that d = M(2sin6). The distame/l
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: » & is termed <0
between any two corresponding arcs on the pr:?;ic?z;,i‘;?, R: 5§ :
X figure 4.20b. S is related to the radius ofthC3P)0 a K.

S=4RO e (1

o radi nversion ol
where 0 is the Bragg angle expressed 10 fﬂdm“ls- 'Fogzafc{e:olhe came(:f
the distance S measured in mm to Bragg 3"‘% ‘35_;“30 grees, A

“radius is often chosen 1o be 57.3mm, as | rad = 57.5"

In th T beam can also he
[ powder method, the intensit of the reflected
Cacon oo nter in place of the film g

‘recorded in a diffractometer, which uses a cou _ _
measure intensities. The counter moves alorig the peri her: of the
4 cylinder and records the reflected intensities againct 20./Pea .; in the
diffractometer recording (figure 4.21) correspond t0 posifions where the
Bragg condition is satisfied:

L
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Figure 4.21: Tracing from a Diffractometer

w\%ﬂ. Structure Determinaticn

ﬂ'!‘he determination of a complex crystal structure is often time-
/ consuming, requiring a lot of patience|and ingenuity. A step-by-step
procedure is followed in suctCases, first determining the macroscopic

%nmet!y of the crystal, then the space lattice and its dimensions, and
na

nally the atomic a ment within whe unit cell. Measurement of the
é_eﬂam{f,ﬂw_e,cmta\;% the chemicat-Somposition also assist the
process of Structure determination. In Sifiple crystaisof high symmetry. |
the space lattice and its dimensions can be determined relatively easily-

If the crystal is monoatomic, the space lattice together with the lattic®
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parameters is a complete description of the crystal 5m;;\,f‘ oil the
other hand, the basis is two or more atoms per lat‘ice pom number
and distribution of atoms within the unit cell can be determined only
from quantitative measurements of the reflected intensities. For such
meast’rements, the recording from a diffractometer is more useful than
the pattern obtained from a powder camera.

Combining equation (11) for the interplanar spacing d with the Bragg
equation, we obtain: :
A 52
Sin’0 = ~— (i #k% 482y el (14)
4a

n is assumed to be 1 for reasons already outlined. 6-values can be
determined from a powder pattern using equation (13). Since
monochromatic radiation is used in the powder technique, the value of 7
is known. Then, the unknowns in equation (14) are the Miller indices of
the reflecting planes that correspond to the measured angles of "L/
reflection. For a given cubic lattice, it is possible to list all combinatious ~
of h, k and | and arrange (h* + k* + %) in increasing order wnich will
also be the increasing order of 6 values, as seen from equation (14).

The sin’ 6 values will be in the same ratio as (h? + K + I%), if the
assumed and actual lattices coincide.

4.1.8)( Crystal Geometry & Structure Determination

" The distinction between lattices of the cubic systera is possible by using
the fact that not all combinations of (h®+ k + I?) iead to reflection for a
given lattice. Consider the first order reflection from the planes of a
BCC crystal. These planes are the faces of the unit cube and contain the
‘corner’ atoms of the cube, figure 4.22:

Figure 4.22: Reflection is Absent for a BCC Crystal, as Reflection from the Corner
Atoms is Exactly Cancelled Out by that from Body Centred Atoms

The path difference between reflected beams from two adjacent planes
i1s one full wavelength and, therefore, the reflected beams are in phase.
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The midway parallel plane between these two planes contains the body
centred atoms, |t is easily seen that the reflection from this midplane

will be out of phase by exactly half of a wavelength with the reflections,
figure 4.22,

As the effective number of body centred atoms is equal to the effective
number of corner atoms in a BCC

crystal, the intensity of the reflected
/ beams from atoms at these two locations will be exactly equal. The phase
difference A/2 then results in a net zero reflected intensity, (Body centreg...,

atoms and body corner atoms, are defined only in a relative sense and are |
interchangeable.) There is thus no first order reflect’on from planes in
BCC crystal. A second order reflection from planes is possible, but this
will superimpose on the first order reflection from planes,

By followin

g a similar reasoning, it is possible to derive extinction rules
for differe

nt cubic crystals, as given table 4.2:

Table: 4.2: Extinction Rules for Cubic Crystals

Crystal Reflections are Allowed
\\ | SC | Forall values of (h¥+ k2 + ),
BCC | For even values of (h+k+1).
FCC | When h, k and | are all odd or all even.

DC When h, k and 1 are all odd, or when all are even,
(h +k + 1) should be divisible by four.

In the above, zero is taken as an even number. The Diamond Cubic |

(DC) crystal is based on the FCC space lattice, with a basis of two
atoms per lattice point.

From the extinction rules, we can derive the ratio of (h? + k* + 1) values
/" for allowed reflections from different crystals:

SC [1:2:3:4:5:6:8... '
BCC [1:2:3:4:5:6:7.... ~ j
FCC | 3:4:8:11:12...

DC |3:8:11:16... ~

- A simple comparison of the observed ratios of sin? © values with the
abe e is then sufficien. to identify the crystal structure.

\A.1.9. X-Ray Diffraction Patter_n_ of Cubic
System (NaCl Powder) T s Pt

The formation of NaCl crystal can be explained ‘in the following
manner. " ne two ions form one jon-pair of opposite charges by the
electrostatic force of attraction. Each of the ions has a strong residual
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field around it and will _nati@ﬂx _attract another ion-pair mpch in the
&ame way as two magnets attract each other, i.c., 8 cluster is formed.
Two_clusters combine together 10 give a uqiﬁtﬂgt‘,:!_l. hpally large
aumber of unit cells unite together to form three-dimensienal cubic

crystal. Z'-f

An examination of NaCl crystal figure 4.23 confirms the following

. points:

=) EachNa" ion is surrounded by six CI ions at the comers of a rfgular

/" octahedron and similarly each Cl ion is surrounded by six Na" ions.
It is, therefore, termed as 6: 6 arrangements. The radius ratio
lrva + /1, =0.95/1.81=0.524| suggests that coordination number of

each ion is six.

O AT T SN

2) In the octahedral structure, CI" ions may be regarded as having a

s c@%%l_mm_(ccp) arrangement in which all octahedral holes
are Na" jons. |

Figure 4.23: Unit Cell Representation of NaCl Structure

3) The distance between two adjacent ions of different kinds is
equal to 2.815 A. Thus, two ions are not touching each other as
the sum of their ionic radii is 2776 A (0.95 + 1.81 = 2.76). This
type of structure is possessed by most of the alkali metal halides
(KCI, Nal), alkaline earth metal oxides and AgF, AgCl, AgBr,
NH,CI, NH,Br, etc.




pharmaceutical Analy sis-il) " 1
13, Phann, b ighth Send

118 four sodium ions and foy,

Mhe unit cell of sodium chloride had
. o8

chloride 1ons. J - | b
‘ e i at the edge centres) * — + al
Number of sodium ions =12 (at . 4

i ‘}11” 1
body centre) = 4 SRR

/i\

I
‘ vela 1 = ; G BIS )(-—+6 at face {
i1) Number of chloride ions = 8 (at the corners) g (

|

\ 8) X — ¢ \ 3 , "&
/ centres) X =4 R L e
.._(; - & H‘,\ l-.
100 - N (CuKa)
W Miller indices - the peak is due to X-ray
9 <4
80 4 diffraction from the {220} planes.
70 -
60 |- |
50 -
|
. 10
30 -
20 - 11
10 -
0 | !
30 40 50 60 70 80 90

DifTraction angle 20 (degrees)
Figure 4.24: XRD Pattern of NaCl Powder

%f.l.lf). Applications in Pharmaceutical Analysis.
Sp

eed, relatively good precision, spectral line specificity, applicability
to a wide range of elements without changing any instrumental
i parameter other than the Bragg angle, etc make X-ray emissioftes

spectroscopy a useful tool for I?ualit}g control in the manufacture of
metals and a!loys.@_g raethod Ras also been used widely f; mineral

anglysisand alsb in the detemiw@q constituents of
rare earth mineraLsJ @ S i
—_ N\

A EX-ray emission provides a convenient means of anal
steels and for heat resistant alloys of Cr-Ni-Co type Analysis of low
percentages is limited by the absorption-of the emitt

ed radiation of the
element by the materials of the Specimcn.&mples having an element of

sis for high alloy
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tb a higher percentage ©f radiation than
would be absorbed by a light element (having low atomic wexght)._ Th.us
nickel in an aluminium alloy can be determined with greater sensitivity

than nickel in steel or silver or lead al@ where the absorption of NiKa

radiation is high.

ﬁ icularly important elémental analytical application of this
échnique is the direct determinati j ine.

X-Ray Spectroscopy (Module 4)
high atomic weight will abso

-\
. e s ) - - -
This Has been widely used to measure the vo'ume of liquids in closi
vessels or pipes without opening or breaking the vessels Or p1pes. 3
N’

(Birks and Brooks have also applied X-ray emission in thiﬂ
determination of hafnium in zirconium and tantalum_ in niobjum.
L‘)'Emission methods have also been applied successfully in trace analySIE
e {)’.) —
Vaséos, Hirsch and Letterman have determined various metals to a
;ogemraﬁon of a fraction of 1ug mL ™" in a 90 minute electrolysis dnto
t

thode of pyrolusite graphite and subsequent X-ray examination O
he cathode surface. Pyrolusite graphite can readily be cleaved into thin
layers suitable for mounting in the X-ray apparatus. Moreover, carbon,
having low atomic number does not contribute to significant
background. .

/
‘ [=
?ay emissiof “methods are readily adapted to liquid samples. For
example, lead and bromine have been determined directly in the
aviation gasoline samples. Ca, Ba and Zn have also been determined in
/lubricating oils by excitation of fluorescence in the liquid samples. The
[ method has also been found to be very suitable for the direct

| determination of the pigments in paint samples.

s )]
EmisE%)n X-ray methods have been used worldwide for research and for
control analysis of major, minor and trace qlgm__gnts.lThis increagmh_é
interest in emission methods is probably due to wide applicability of X- _—<
rays for rapid quantitative analysis. |X-ray emission methods have @
proved to be of immense applicability 1n such analytical problems as
iror: in blood, calcium in cement, titanium in paper products, chromium
in glass and selenium in plant materials.] &

Fhe most recent development in emission applications has been tl« on-

Stream process control of metailurgical systems. For example, addition
/ of floatation reagents to a sphalerite concentrate is controlled by on
I stream analysis of heads, concentrates and tailings.




