Scheme and Syllabus
B. Pharmacy
Batch 2017 onwards

By
Department of Academics

IK Gujral Punjab Technical University
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L+T</th>
<th>P</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP101T</td>
<td>Human Anatomy and Physiology I–Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP102T</td>
<td>Pharmaceutical Analysis I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP103T</td>
<td>Pharmacetics I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP104T</td>
<td>Pharmaceutical Inorganic Chemistry – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP105T</td>
<td>Communication skills – Theory *</td>
<td>2</td>
<td>--</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP106RBT</td>
<td>Remedial Biology/Remedial Mathematics – Theory*</td>
<td>2</td>
<td>--</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP107P</td>
<td>Human Anatomy and Physiology – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP108P</td>
<td>Pharmaceutical Analysis – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP109P</td>
<td>Pharmacetics I – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP110P</td>
<td>Pharmaceutical Inorganic Chemistry – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP111P</td>
<td>Communication skills – Practical*</td>
<td>--</td>
<td>2</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP112RBP</td>
<td>Remedial Biology – Practical*</td>
<td>--</td>
<td>2</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18/20/20/#</td>
<td>18/18/20/#</td>
<td>185/200/210/#</td>
<td>490/525/540/#</td>
</tr>
</tbody>
</table>

- $ Applicable ONLY for the students who have studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM) course.
- # Applicable ONLY for the students who have studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB) course.
- * Non University Examination (NUE).
Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L+T</th>
<th>P</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP201T</td>
<td>Human Anatomy and Physiology II – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP202T</td>
<td>Pharmaceutical Organic Chemistry I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP203T</td>
<td>Biochemistry – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP204T</td>
<td>Pathophysiology – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP205T</td>
<td>Computer Applications in Pharmacy – Theory</td>
<td>3</td>
<td>--</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>BP206T</td>
<td>Environmental sciences – Theory *</td>
<td>3</td>
<td>--</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>BP207P</td>
<td>Human Anatomy and Physiology II – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP208P</td>
<td>Pharmaceutical Organic Chemistry I– Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP209P</td>
<td>Biochemistry – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP210P</td>
<td>Computer Applications in Pharmacy – Practical*</td>
<td>--</td>
<td>2</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>22</td>
<td>14</td>
<td>205</td>
<td>520</td>
</tr>
</tbody>
</table>

- * Non University Examination (NUE).
Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L+T</th>
<th>P</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP301T</td>
<td>Pharmaceutical Organic Chemistry II – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP302T</td>
<td>Physical Pharmaceutics I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP303T</td>
<td>Pharmaceutical Microbiology – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP304T</td>
<td>Pharmaceutical Engineering – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP305P</td>
<td>Pharmaceutical Organic Chemistry II – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP306P</td>
<td>Physical Pharmaceutics I – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP307P</td>
<td>Pharmaceutical Microbiology – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP308P</td>
<td>Pharmaceutical Engineering – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>16</td>
<td>160</td>
<td>440</td>
</tr>
</tbody>
</table>
Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L+T</th>
<th>P</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>BP401T</td>
<td>Pharmaceutical Organic Chemistry III – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP402T</td>
<td>Medicinal Chemistry I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP403T</td>
<td>Physical Pharmaceutics II – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP404T</td>
<td>Pharmacology I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP405T</td>
<td>Pharmacognosy and Phytochemistry I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP406P</td>
<td>Medicinal Chemistry I – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP407P</td>
<td>Physical Pharmaceutics II – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP408P</td>
<td>Pharmacology I – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP409P</td>
<td>Pharmacognosy and Phytochemistry I – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>16</td>
<td>185</td>
<td>515</td>
</tr>
</tbody>
</table>
Fifth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L+T</th>
<th>P</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP501T</td>
<td>Medicinal Chemistry II – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP502T</td>
<td>Industrial Pharmacy I – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP503T</td>
<td>Pharmacology II – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP504T</td>
<td>Pharmacognosy and Phytochemistry II – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP505T</td>
<td>Pharmaceutical Jurisprudence – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP506P</td>
<td>Industrial Pharmacy I – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>BP507P</td>
<td>Pharmacology II – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>BP508P</td>
<td>Pharmacognosy and Phytochemistry II – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>12</td>
<td>170</td>
<td>480</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>L+T</td>
<td>P</td>
<td>Marks</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eighth Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP601T</td>
<td>Medicinal Chemistry III – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP602T</td>
<td>Pharmacology III – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP603T</td>
<td>Herbal Drug Technology – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP604T</td>
<td>Biopharmaceutics and Pharmacokinetics –</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP605T</td>
<td>Pharmaceutical Biotechnology – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP606T</td>
<td>Quality Assurance – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>BP607P</td>
<td>Medicinal chemistry III – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP608P</td>
<td>Pharmacology III – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP609P</td>
<td>Herbal Drug Technology – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>24</td>
<td>12</td>
<td>195</td>
<td>555</td>
</tr>
</tbody>
</table>
Seventh Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L+T</th>
<th>P</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP701T</td>
<td>Instrumental Methods of Analysis – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP702T</td>
<td>Industrial Pharmacy II – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP703T</td>
<td>Pharmacy Practice – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP704T</td>
<td>Novel Drug Delivery System – Theory</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP705P</td>
<td>Instrumental Methods of Analysis – Practical</td>
<td>--</td>
<td>4</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP706PS</td>
<td>Practice School*</td>
<td>--</td>
<td>12</td>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>16</td>
<td>140</td>
<td>460</td>
</tr>
</tbody>
</table>

* Non University Examination (NUE).
Eighth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L+T</th>
<th>P</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP801T</td>
<td>Biostatistics and Research Methodology</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>BP802T</td>
<td>Social and Preventive Pharmacy</td>
<td>3+1</td>
<td>--</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>BP803ET</td>
<td>Pharma Marketing Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP804ET</td>
<td>Pharmaceutical Regulatory Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP805ET</td>
<td>Pharmacovigilance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP806ET</td>
<td>Quality Control and Standardization of Herbals</td>
<td>3+1</td>
<td>--</td>
<td>25+25</td>
<td>4+4</td>
</tr>
<tr>
<td>BP807ET</td>
<td>Computer Aided Drug Design</td>
<td>3+1</td>
<td>--</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>BP808ET</td>
<td>Cell and Molecular Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP809ET</td>
<td>Cosmetic Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP810ET</td>
<td>Experimental Pharmacology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP811ET</td>
<td>Advanced Instrumentation Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP812ET</td>
<td>Dietary Supplements and Nutraceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP813ET</td>
<td>Pharmaceutical Product Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP814PW</td>
<td>Project Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>12</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>
Semester Wise Credit Distribution

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>27/29/30*</td>
</tr>
<tr>
<td>Second</td>
<td>29</td>
</tr>
<tr>
<td>Third</td>
<td>24</td>
</tr>
<tr>
<td>Fourth</td>
<td>28</td>
</tr>
<tr>
<td>Fifth</td>
<td>26</td>
</tr>
<tr>
<td>Sixth</td>
<td>30</td>
</tr>
<tr>
<td>Seventh</td>
<td>24</td>
</tr>
<tr>
<td>Eighth</td>
<td>22</td>
</tr>
<tr>
<td>Extracurricular/ Co curricular activities</td>
<td>01*</td>
</tr>
<tr>
<td>Total Credit Points for the program</td>
<td>211/213/214#</td>
</tr>
</tbody>
</table>

- $ Applicable ONLY for the students who have studied Physics / Chemistry / Botany / Zoology at HSC and appearing for Remedial Mathematics (RM) course.

- # Applicable ONLY for the students who have studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB) course.

- * The credit points assigned for extracurricular and or co-curricular activities shall be given by the Principals of the colleges and the same shall be submitted to the University. The criteria to acquire this credit point shall be defined by the colleges from time to time.
Program Committee

- The B. Pharm. program shall have a Program Committee constituted by the Head of the institution in consultation with all the Heads of the departments.

- The composition of the Program Committee shall be as follows:

a) A senior teacher shall be the Chairperson.
b) One Teacher from each department handling B.Pharm courses
c) Four student representatives of the program (one from each academic year), nominated by the Head of the Institution

Duties of the Program Committee

1. Periodically reviewing the progress of the classes
2. Discussing the problems concerning curriculum, syllabus and the conduct of classes
3. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters
4. Communicating its recommendation to the Head of the Institution on Academic Matters
5. The Program Committee shall meet at least thrice in a semester preferably at the end of each Sessionalexam (Internal Assessment) and before the end semester exam

Industrial Training (Desirable)

- Every candidate shall be required to work for at least 150 hours spread over four weeks in a Pharmaceutical Industry/Hospital. It includes Production unit, Quality Control department, Quality Assurance Department, Analytical laboratory, Chemical manufacturing unit, Pharmaceutical R&D, Hospital (Clinical Pharmacy), Clinical Research Organization, Community Pharmacy, etc.
- Training will be after the 6th Semester and before the commencement of 7th Semester.
- Student shall submit satisfactory report of such work and certificate duly signed by the authority of training organization to the Head of the Institute.

End Semester Examinations

- The End Semester Examinations for each theory and practical course through semesters 1 to 8 shall be conducted by the University except for the subjects with asterix symbol (*) in Schemes of Semester 1 and 2 for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the University.
Sessional Exams

- Two Sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s).
- The average marks of two Sessional exams shall be computed for internal assessment.
- Sessional exam shall be conducted for 30 marks for theory and shall be computed for 15 marks.
- Sessional exam for practical shall be conducted for 40 marks and shall be computed for 10 marks.

Question Paper Pattern for Theory Sessional Examinations

For Subjects Having University Examination

<table>
<thead>
<tr>
<th>Multiple Choice Questions (MCQs)</th>
<th>10 x 1 = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Objective Type Questions (5 x 2)</td>
<td>05 x 2 = 10</td>
</tr>
<tr>
<td>(Answer all the questions)</td>
<td></td>
</tr>
<tr>
<td>Short Answers (Answer 2 out of 3)</td>
<td>2 x 5 = 10</td>
</tr>
<tr>
<td>Long Answers (Answer 1 out of 2)</td>
<td>1 x 10 = 10</td>
</tr>
<tr>
<td>Total</td>
<td>30 Marks</td>
</tr>
</tbody>
</table>

For Subjects Having Non University Examination

Short Answers (Answer 4 out of 6)	4 x 5 = 20
Long Answers (Answer 1 out of 2)	1 x 10 = 10
Total	30 Marks

Question Paper Pattern for Practical Sessional Examinations

Synopsis	10
Experiments	25
Viva voce	05
Total	40 Marks
Internal Assessment

- The internal assessment will have two components i.e. **Continuous Mode** and **Sessional Exams**

1. For Theory Courses having Internal of 25 Marks the scheme of internal award is:
 - Sessional Exams: 15 Marks
 - Continuous Mode: 10 Marks

 Continuous Mode Scheme

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Attendance (as per table given below)</td>
<td>4</td>
</tr>
<tr>
<td>Academic activities (Average of any 3 activities e.g. quiz, assignment, open book test, field work, group discussion and seminar)</td>
<td>3</td>
</tr>
<tr>
<td>Student – Teacher interaction</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
</tr>
</tbody>
</table>

2. For Theory Courses having Internal of 15 Marks the scheme of internal award is:
 - Sessional Exams: 10 Marks
 - Continuous Mode: 05 Marks

 Continuous Mode Scheme

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Attendance (as per table given below)</td>
<td>2</td>
</tr>
<tr>
<td>Academic activities (Average of any 3 activities e.g. quiz, assignment, open book test, field work, group discussion and seminar)</td>
<td>1.5</td>
</tr>
<tr>
<td>Student – Teacher interaction</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

3. For Practical Courses having Internal of 15 Marks the scheme of internal award is:
 - Sessional Exams: 10 Marks
 - Continuous Mode: 05 Marks

 Continuous Mode Scheme

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Attendance (as per table given below)</td>
<td>2</td>
</tr>
<tr>
<td>Based on Practical Records, Regular viva voce, etc.</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>
4. For Practical Courses having Internal of 10 Marks the scheme of internal award is:
 - Sessional Exams: 05 Marks
 - Continuous Mode: 05 Marks

Continuous Mode Scheme

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Attendance (as per table given below)</td>
<td>2</td>
</tr>
<tr>
<td>Based on Practical Records, Regular viva voce, etc.</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Guidelines for the Allotment of Marks for Attendance

<table>
<thead>
<tr>
<th>Percentage of Attendance</th>
<th>Theory (Attendance Maximum Marks 04)</th>
<th>Theory (Attendance Maximum Marks 02)</th>
<th>Practical (Attendance Maximum Marks 02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 – 100</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>90 – 94</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>85 – 89</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>80 – 84</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Less than 80</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
1st SEMESTER
Course Code | Course Title | Teaching Load | Marks | Exam (hrs) | Credits
-------------|--------------|---------------|-------|-----------|---------
BP101T | Human Anatomy and Physiology-I | 3 1 - | 25 75 | 1 3 | 4

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course, the student should be able to

1. Explain the gross morphology, structure and functions of various organs of the human body.
2. Describe the various homeostatic mechanisms and their imbalances.
3. Identify the various tissues and organs of different systems of human body.
4. Perform the various experiments related to special senses and nervous system.
5. Appreciate coordinated working pattern of different organs of each system.

Module 01 10 hours

Introduction to Human Body
- Definition and scope of anatomy and physiology, levels of structural organization and body systems, basic life processes, homeostasis, basic anatomical terminology.

Cellular Level of Organization
- Structure and functions of cell, transport across cell membrane, cell division, cell junctions. General principles of cell communication, intracellular signalling pathway activation by extracellular signal molecule, Forms of intracellular signalling: a) Contact-dependent b) Paracrine c) Synaptic d) Endocrine.

Tissue Level of Organization
- Classification of tissues, structure, location, functions of epithelial, muscular and nervous, and connective tissues.

Module 02 10 hours

Integumentary System
- Structure and functions of skin.

Skeletal System
- Divisions of skeletal system, types of bone, salient features and functions of bones of axial and appendicular skeletal system. Organization of skeletal muscle, physiology of muscle contraction, neuromuscular junction.

Joints
- Structural and functional classification, types of joints movements and its articulation.
Module 03 10 hours

Body Fluids and Blood
- Body fluids, composition and functions of blood, hemopoiesis, formation of hemoglobin, anemia, mechanisms of coagulation, blood grouping, Rh factors, transfusion, its significance and disorders of blood, Reticuloendothelial system.

Lymphatic System
- Lymphatic organs and tissues, lymphatic vessels, lymph circulation and functions of lymphatic system

Module 04 08 hours

Peripheral Nervous System
- Classification of peripheral nervous system: Structure and functions of sympathetic and parasympathetic nervous system. Origin and functions of spinal and cranial nerves.

Special Senses
- Structure and functions of eye, ear, nose and tongue and their disorders.

Module 05 07 hours

Cardiovascular System
- Heart – anatomy of heart, blood circulation, blood vessels, structure and functions of artery, vein and capillaries, elements of conduction system of heart and heart beat, its regulation by autonomic nervous system, cardiac output, cardiac cycle.
- Regulation of blood pressure, pulse, electrocardiogram and disorders of heart.

Recommended Books (Latest Editions)
3. Physiological basis of Medical Practice-Best and Tailor. Williams and Wilkins Co, Riverview, MI USA.
6. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrje, Academic Publishers Kolkata.
Scope: This course deals with the fundamentals of analytical chemistry and principles of electrochemical analysis of drugs.

Objectives: Upon completion of the course student shall be able to

1. Understand the principles of volumetric and electro chemical analysis.
2. Carry out various volumetric and electrochemical titrations.
3. Develop analytical skills.

Module 01

- Pharmaceutical analysis- Definition and scope
 a. Different techniques of analysis.
 b. Methods of expressing concentration.
 c. Primary and secondary standards.
 d. Preparation and standardization of various molar and normal solutions- Oxalic acid, sodium hydroxide, hydrochloric acid, sodium thiosulphate, sulphuric acid, potassium permanganate and ceric ammonium sulphate
- Errors: Sources of errors, types of errors, methods of minimizing errors, accuracy, precision and significant figures
- Pharmacopoeia, Sources of impurities in medicinal agents, limit tests.

Module 02

- Acid base titration: Theories of acid base indicators, classification of acid base titrations and theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves.
- Non-aqueous titration: Solvents, acidimetry and alkalimetry titration and estimation of Sodium benzoate and Ephedrine HCl.

Module 03

- Precipitation titrations: Mohr’s method, Volhard’s, Modified Volhard’s, Fajans method, estimation of sodium chloride.
- Complexometric titration: Classification, metal ion indicators, masking and demasking reagents, estimation of Magnesium sulphate, and calcium gluconate.
- Diazotisation titration: Basic Principles, methods and application.
Module 04 08 Hours

- Redox titrations
 b. Types of redox titrations (Principles and applications).
- Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate.

Module 05 07 Hours

- Electrochemical methods of analysis
 a. Conductometry- Introduction, Conductivity cell, Conductometric titrations, applications.
 b. Potentiometry - Electrochemical cell, construction and working of reference (Standard hydrogen, silver chloride electrode and calomel electrode) and indicator electrodes (metal electrodes and glass electrode), methods to determine end point of potentiometric titration and applications.
 c. Polarography - Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications.

Recommended Books (Latest Editions)

2. A.I. Vogel, Text Book of Quantitative Inorganic analysis.
5. John H. Kennedy, Analytical chemistry principles.
6. Indian Pharmacopoeia.
Scope: This course is designed to impart a fundamental knowledge on the preparatory pharmacy with arts and science of preparing the different conventional dosage forms.

Objectives: Upon completion of this course, the student should be able to:

1. Know the history of profession of pharmacy.
2. Understand the basics of different dosage forms, pharmaceutical incompatibilities and pharmaceutical calculations.
3. Understand the professional way of handling the prescription.
4. Preparation of various conventional dosage forms.

Module 01 10 Hours

Historical Background and Development of Profession of Pharmacy
 • History of profession of Pharmacy in India in relation to pharmacy education, industry and organization, Pharmacy as a career, Pharmacopoeias: Introduction to IP, BP, USP and Extra Pharmacopoeia.

Dosage Forms
 • Introduction to dosage forms, classification and definitions.

Prescription
 • Definition, Parts of prescription, handling of prescription
 • Errors in prescription.

Posology
 • Definition, Factors affecting posology.
 • Pediatric dose calculations based on age, body weight and body surface area.

Module 02 10 Hours

Pharmaceutical Calculations
 • Weights and measures – Imperial and Metric system, Calculations involving percentage solutions, alligation, proof spirit and isotonic solutions based on freezing point and molecular weight.

Powders
 • Definition, classification, advantages and disadvantages, Simple and compound powders – official preparations, dusting powders, effervescent, efflorescent and hygroscopic powders, eutectic mixtures. Geometric dilutions.

Liquid Dosage Forms
 • Advantages and disadvantages of liquid dosage forms
- Excipients used in formulation of liquid dosage forms
- Solubility enhancement techniques.

Module 03 08 Hours

Monophasic Liquids

Biphasic Liquids
- Suspensions: Definition, advantages and disadvantages, classifications, Preparation of suspensions; Flocculated and Deflocculated suspension and stability problems and methods to overcome.
- Emulsions: Definition, classification, emulsifying agent, test for the identification of type of Emulsion, Methods of preparation and stability problems and methods to overcome.

Module 04 08 Hours

Suppositories
- Definition, types, advantages and disadvantages, types of bases, methods of preparations. Displacement value and its calculations, evaluation of suppositories.

Pharmaceutical Incompatibilities
- Definition, classification, physical, chemical and therapeutic incompatibilities with examples.

Module 05 07 Hours

Semisolid Dosage Forms
- Definitions, classification, mechanisms and factors influencing dermal penetration of drugs. Preparation of ointments, pastes, creams and gels. Excipients used in semi solid dosage forms. Evaluation of semi solid dosages forms.

Recommended Books (Latest Editions)

2. Carter S.J., Cooper and Gunn's-Dispensing for Pharmaceutical Students, CBS publishers, New Delhi.
4. Indian pharmacopoeia.
5. British pharmacopoeia.
9. E.A. Rawlins, Bentley’s Text Book of Pharmaceutics, English Language Book Society, Elsevier Health Sciences, USA.
Scope: This subject deals with the monographs of inorganic drugs and pharmaceuticals.

Objectives: Upon completion, of course student shall be able to
1. Know the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals.
2. Understand the medicinal and pharmaceutical importance of inorganic compounds.

Module 01
10 Hours

Impurities in Pharmaceutical Substances
- History of Pharmacopoeia, Sources and types of impurities, principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals, modified limit test for Chloride and Sulphate.

Module 02
10 Hours

General methods of preparation, assay for the compounds superscripted with asterisk (*), properties and medicinal uses of inorganic compounds belonging to the following classes.

Acids, Bases and Buffers
- Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity.

Major Extra and Intracellular Electrolytes
- Functions of major physiological ions, Electrolytes used in the replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS), Physiological acid base balance.

Dental Products
- Dentifrices, role of fluoride in the treatment of dental caries, Desensitizing agents, Calcium carbonate, Sodium fluoride, and Zinc eugenol cement.

Module 03
10 Hours

Gastrointestinal Agents
- Acidifiers: Ammonium chloride* and Dil. HCl.
- Antacid: Ideal properties of antacids, combinations of antacids, Sodium Bicarbonate*, Aluminum hydroxide gel, Magnesium hydroxide mixture.
- Cathartics: Magnesium sulphate, Sodium orthophosphate, Kaolin and Bentonite.
Module 04 08 Hours

Miscellaneous Compounds
- Expectorants: Potassium iodide, Ammonium chloride*.
- Emetics: Copper sulphate*, Sodium potassium tartarate.
- Haematinics: Ferrous sulphate*, Ferrous gluconate.
- Poison and Antidote: Sodium thiosulphate*, Activated charcoal, Sodium nitrite333.
- Astringents: Zinc Sulphate, Potash Alum.

Module 05 07 Hours

Radiopharmaceuticals
- Radio activity, Measurement of radioactivity, Properties of α, β, γ radiations, Half life, radio isotopes and study of radio isotopes - Sodium iodide 131I, Storage conditions, precautions and pharmaceutical application of radioactive substances.

Recommended Books (Latest Editions)

2. A.I. Vogel, Text Book of Quantitative Inorganic analysis.
7. Indian Pharmacopoeia.
Scope: This course will prepare the young pharmacy student to interact effectively with doctors, nurses, dentists, physiotherapists and other health workers. At the end of this course the student will get the soft skills set to work cohesively with the team as a team player and will add value to the pharmaceutical business.

Objectives: Upon completion of the course, the student shall be able to

1. Understand the behavioral needs for a Pharmacist to function effectively in the areas of pharmaceutical operation.
2. Communicate effectively (Verbal and Non Verbal).
3. Effectively manage the team as a team player.
4. Develop interview skills.
5. Develop Leadership qualities and essentials.

Module 01 07 Hours

Communication Skills
- Introduction, Definition, The Importance of Communication.

Barriers to Communication
- Physiological Barriers, Physical Barriers, Cultural Barriers, Language Barriers, Gender Barriers, Interpersonal Barriers, Psychological Barriers, Emotional barriers.

Perspectives in Communication

Module 02 07 Hours

Elements of Communication
- Introduction, Face to Face Communication -Tone of Voice, Body Language (Non-verbal communication), Verbal Communication, Physical Communication.

Communication Styles
Module 03 07 Hours

Basic Listening Skills
• Introduction, Self-Awareness, Active Listening, Becoming an Active Listener, Listening in Difficult Situations.

Effective Written Communication
• Introduction, When and When Not to Use Written Communication - Complexity of the Topic, Amount of Discussion’ Required, Shades of Meaning, Formal Communication.

Writing Effectively
• Subject Lines, Put the Main Point First, Know Your Audience, Organization of the Message.

Module 04 05 Hours

Interview Skills
• Purpose of an interview, Do’s and Dont’s of an interview.

Giving Presentations
• Dealing with Fears, Planning your Presentation, Structuring Your Presentation, Delivering Your Presentation, Techniques of Delivery.

Module 05 04 Hours

Group Discussion
• Introduction, Communication skills in- group discussion, Do’s and Dont’s of group discussion.

Recommended Books (Latest Editions)

1. Basic communication skills for Technology, Andreja. J. Ruther Ford, Pearson Education.
2. Communication skills, Sanjay Kumar, Pushpalata, Oxford Press.
6. Developing your influencing skills, Deborah Dalley, Lois Burton, Margaret, Green hall, Universe of Learning LTD.
7. Communication skills for professionals, Konar nira, New arrivals – PHI.
10. Soft skills and professional communication, Francis Peters SJ, Mc Graw Hill Education.
11. Effective communication, John Adair, Pan Mac Millan.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 106RBT</td>
<td>Remedial Biology</td>
<td>2 - -</td>
<td>15</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Scope: To learn and understand the components of living world, structure and functional system of plant and animal kingdom.

Objectives: Upon completion of the course, the student shall be able to

1. Know the classification and salient features of five kingdoms of life.
2. Understand the basic components of anatomy and physiology of plant.
3. Know understand the basic components of anatomy and physiology animal with special reference to human.

Module 01 07 Hours

Living World
- Definition and characters of living organisms.
- Diversity in the living world.
- Binomial nomenclature.
- Five kingdoms of life and basis of classification. Salient features of Monera, Potista, Fungi, Animalia and Plantae, Virus.

Morphology of Flowering Plants
- Morphology of different parts of flowering plants – Root, stem, inflorescence, flower, leaf, fruit, seed.
- General Anatomy of Root, stem, leaf of monocotyledons and Dicotylidones.

Module 02 07 Hours

Body Fluids and Circulation
- Composition of blood, blood groups, coagulation of blood.
- Composition and functions of lymph.
- Human circulatory system.
- Structure of human heart and blood vessels.
- Cardiac cycle, cardiac output and ECG.

Digestion and Absorption
- Human alimentary canal and digestive glands.
- Role of digestive enzymes.
- Digestion, absorption and assimilation of digested food.

Breathing and Respiration
- Human respiratory system.
- Mechanism of breathing and its regulation.
- Exchange of gases, transport of gases and regulation of respiration.
- Respiratory volumes.

Module 03
07 Hours

Excretory Products and Their Elimination
- Modes of excretion.
- Human excretory system- structure and function.
- Urine formation.
- Rennin angiotensin system.

Neural Control and Coordination
- Definition and classification of nervous system.
- Structure of a neuron.
- Generation and conduction of nerve impulse.
- Structure of brain and spinal cord.
- Functions of cerebrum, cerebellum, hypothalamus and medulla oblongata.

Chemical Coordination and Regulation
- Endocrine glands and their secretions.
- Functions of hormones secreted by endocrine glands.

Human Reproduction
- Parts of female reproductive system.
- Parts of male reproductive system.
- Spermatogenesis and Oogenesis.
- Menstrual cycle.

Module 04
05 Hours

Plants and Mineral Nutrition
- Essential mineral, macro and micronutrients.
- Nitrogen metabolism, Nitrogen cycle, biological nitrogen fixation.

Photosynthesis
- Autotrophic nutrition, photosynthesis, Photosynthetic pigments, Factors affecting photosynthesis.

Module 05
04 Hours

Plant Respiration
- Respiration, glycolysis, fermentation (anaerobic).

Plant Growth and Development
- Phases and rate of plant growth, Condition of growth, Introduction to plant growth regulators.

Cell - The Unit of Life
- Structure and functions of cell and cell organelles. Cell division.

Tissues
• Definition, types of tissues, location and functions.

Text Books

2. A Textbook of Biology by Dr. Thulajappa and Dr. Seetaram.

Reference Books

2. A Text book of Biology by Naidu and Murthy
3. Botany for Degree students By A.C.Dutta.
Course Information

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 106RMT</td>
<td>Remedial Mathematics</td>
<td>2</td>
<td>-</td>
<td>15 35</td>
<td>1 1.5</td>
</tr>
</tbody>
</table>

Scope

This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction, Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform.

Objectives

Upon completion of the course the student shall be able to:

1. Know the theory and their application in Pharmacy.
2. Solve the different types of problems by applying theory.
3. Appreciate the important application of mathematics in Pharmacy.

Module 01

Partial Fraction

Logarithms

- Introduction, Definition, Theorems/Properties of logarithms, Common logarithms, Characteristic and Mantissa, worked examples, application of logarithm to solve pharmaceutical problems.

Function

- Real Valued function, Classification of real valued functions.

Limits and continuity

Introduction, Limit of a function, Definition of limit of a function \((\epsilon-\delta\) definition), \(\lim_{x \to a} x^n - a^n = na^{n-1}\), \(\lim_{x \to a} \sin(x) = 1\), \(\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1\).

Module 02

Matrices and Determinant

Module 03

Differentiation

- Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions, Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – Without Proof, Derivative of $x^n \text{ w.r.t. } x$, where n is any rational number, Derivative of e^x, Derivative of $\log_e x$, Derivative of a^x, Derivative of trigonometric functions from first principles (without Proof), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application.

Module 04

Analytical Geometry

- Introduction, Signs of the Coordinates, Distance formula.

Straight Line

- Slope or gradient of a straight line, Conditions for parallelism and perpendicularity of two lines, Slope of a line joining two points, Slope – intercept form of a straight line.

Integration

- Introduction, Definition, Standard formulae, Rules of integration, Method of substitution, Method of Partial fractions, Integration by parts, definite integrals, application.

Module 05

Differential Equations

- Some basic definitions, Order and degree, Equations in separable form, Homogeneous equations, Linear Differential equations, Exact equations, Application in solving Pharmacokinetic equations.

Laplace Transform

Recommended Books (Latest Edition)

1. Differential Calculus by Shanthinarayan.
2. Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda D.H.
3. Integral Calculus by Shanthinarayan.
Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

1. Study of compound microscope.
2. Microscopic study of epithelial and connective tissue.
3. Microscopic study of muscular and nervous tissue
4. Identification of axial bones
5. Identification of appendicular bones
6. Introduction to hemocytometry.
7. Enumeration of white blood cell (WBC) count
8. Enumeration of total red blood corpuscles (RBC) count
9. Determination of bleeding time
10. Determination of clotting time
11. Estimation of hemoglobin content
12. Determination of blood group.
13. Determination of erythrocyte sedimentation rate (ESR).
15. Recording of blood pressure.

Recommended Books (Latest Editions)

1. Textbook of Practical Physiology by C.L. Ghai, Jaypee brother’s medical publishers, New Delhi.
2. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother’s medical publishers, New Delhi.
Limit Test of The Following

- Chloride
- Sulphate
- Iron
- Arsenic

Preparation and Standardization of

- Sodium hydroxide
- Sulphuric acid
- Sodium thiosulfate
- Potassium permanganate
- Ceric ammonium sulphate

Assay of the Following Compounds Along With Standardization of Titrant

- Ammonium chloride by acid base titration
- Ferrous sulphate by Cerimetry
- Copper sulphate by Iodometry
- Calcium gluconate by complexometry
- Hydrogen peroxide by Permanganometry
- Sodium benzoate by non-aqueous titration
- Sodium Chloride by precipitation titration

Determination of Normality by Electro-Analytical Methods

- Conductometric titration of strong acid against strong base
- Conductometric titration of strong acid and weak acid against strong base
- Potentiometric titration of strong acid against strong base

Recommended Books (Latest Editions)

2. A.I. Vogel, Text Book of Quantitative Inorganic analysis.
5. John H. Kennedy, Analytical chemistry principles.
6. Indian Pharmacopoeia.
Sympirp
- Syrup IP’66

Compound Syrup of Ferrous Phosphate BPC’68
- Elixirs
- Piperazine citrate elixir
- Paracetamol pediatric elixir

Linctus
- Terpin Hydrate Linctus IP’66
- Iodine Throat Paint (Mandles Paint)

Solutions
- Strong solution of ammonium acetate
- Cresol with soap solution
- Lugel’s solution

Suspensions
- Calamine lotion
- Magnesium Hydroxide mixture
- Aluminium Hydroxide gel

Emulsions
- Turpentine Liniment
- Liquid paraffin emulsion

Powders and Granules
- ORS powder (WHO)
- Effervescent granules
- Dusting powder
- Divided powders

Suppositories
- Glycero gelatin suppository
- Coca butter suppository
- Zinc Oxide suppository

Semisolids
- Sulphur ointment
- Non staining-iodine ointment with methyl salicylate
- Carbopap gel
Gargles and Mouthwashes

- Iodine gargle
- Chlorhexidine mouthwash

Recommended Books (Latest Editions)

2. Carter S.J., Cooper and Gunn’s-Dispensing for Pharmaceutical Students, CBS publishers, New Delhi.
4. Indian pharmacopoeia.
5. British pharmacopoeia.
9. E.A. Rawlins, Bentley’s Text Book of Pharmaceutics, English Language Book Society, Elsevier Health Sciences, USA.
Limit Tests for Following Ions
- Limit test for Chlorides and Sulphates.
- Modified limit test for Chlorides and Sulphates.
- Limit test for Iron.
- Limit test for Heavy metals.
- Limit test for Lead.
- Limit test for Arsenic.

Identification Test
- Magnesium hydroxide.
- Ferrous sulphate.
- Sodium bicarbonate Calcium gluconate.
- Copper sulphate.

Test for Purity
- Swelling power of Bentonite.
- Neutralizing capacity of aluminum hydroxide gel.
- Determination of potassium iodate and iodine in potassium Iodide.

Preparation of Inorganic Pharmaceuticals
- Boric acid.
- Potash alum.
- Ferrous sulphate.

Recommended Books (Latest Editions)
2. A.I. Vogel, Text Book of Quantitative Inorganic analysis.
7. Indian Pharmacopoeia.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP111P</td>
<td>Communication Skills</td>
<td>-</td>
<td>10</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

The following learning modules are to be conducted using wordsworth® English language lab software

Basic Communication Covering the Following Topics
- Meeting People
- Asking Questions
- Making Friends
- What did you do?
- Do’s and Don’ts

Pronunciations Covering the Following Topics
- Pronunciation (Consonant Sounds)
- Pronunciation and Nouns
- Pronunciation (Vowel Sounds)

Advanced Learning
- Listening Comprehension / Direct and Indirect Speech
- Figures of Speech
- Effective Communication
- Writing Skills
- Effective Writing
- Interview Handling Skills
- E-Mail etiquette
- Presentation Skills

Recommended Books (Latest Editions)

1. Basic communication skills for Technology, Andreja. J. Ruther Ford, Pearson Education.
2. Communication skills, Sanjay Kumar, Pushpalata, Oxford Press.
6. Developing your influencing skills, Deborah Dalley, Lois Burton, Margaret, Green hall, Universe of Learning LTD.
7. Communication skills for professionals, Konar nira, New arrivals – PHI.
10. Soft skills and professional communication, Francis Peters SJ, Mc Graw Hill Education.
11. Effective communication, John Adair, Pan Mac Millan.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP112P</td>
<td>Remedial Biology</td>
<td>L T P Int.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Introduction to experiments in biology
 a. Study of Microscope
 b. Section cutting techniques
 c. Mounting and staining
 d. Permanent slide preparation
2. Study of cell and its inclusions
3. Study of Stem, Root, Leaf, seed, fruit, flower and their modifications
4. Detailed study of frog by using computer models
5. Microscopic study and identification of tissues pertinent to Stem, Root, Leaf, seed, fruit and flower
6. Identification of bones
7. Determination of blood group
8. Determination of blood pressure
9. Determination of tidal volume

Text Books

2. A Textbook of Biology by Dr. Thulajappa and Dr. Seetaram.

Reference Books

2. Botany for Degree students By A. C. Dutta.
2nd SEMESTER
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP201T</td>
<td>Human Anatomy and Physiology-II</td>
<td>3 L 1 T 25 P 75 Int. 1 Ext. 3</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course, the student should be able to:

1. Explain the gross morphology, structure and functions of various organs of the human body.
2. Describe the various homeostatic mechanisms and their imbalances.
3. Identify the various tissues and organs of different systems of human body.
4. Perform the hematological tests like blood cell counts, haemoglobin estimation, bleeding/clotting time etc and also record blood pressure, heart rate, pulse and respiratory volume.
5. Appreciate coordinated working pattern of different organs of each system.
6. Appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of human body.

Module 01

10 hours

Nervous System

- Organization of nervous system, neuron, neuroglia, classification and properties of nerve fibre, electrophysiology, action potential, nerve impulse, receptors, synapse, neurotransmitters.
- Central nervous system: Meninges, ventricles of brain and cerebrospinal fluid. Structure and functions of brain (cerebrum, brain stem, cerebellum), spinal cord (gross structure, functions of afferent and efferent nerve tracts, reflex activity).

Module 02

06 Hours

Digestive System

- Anatomy of GI Tract with special reference to anatomy and functions of stomach, (Acid production in the stomach, regulation of acid production through parasympathetic nervous system, pepsin role in protein digestion) small intestine and large intestine, anatomy and functions of salivary glands, pancreas and liver, movements of GIT, digestion and absorption of nutrients and disorders of GIT.

Energetics

- Formation and role of ATP, Creatinine Phosphate and BMR.
Module 03 10 Hours

Respiratory System
- Anatomy of respiratory system with special reference to anatomy of lungs, mechanism of respiration, regulation of respiration.
- Lung Volumes and capacities transport of respiratory gases, artificial respiration, and resuscitation methods.

Urinary System

Module 04 10 hours

Endocrine System
- Classification of hormones, mechanism of hormone action, structure and functions of pituitary gland, thyroid gland, parathyroid gland, adrenal gland, pancreas, pineal gland, thymus and their disorders.

Module 05 09 Hours

Reproductive System
- Anatomy of male and female reproductive system, Functions of male and female reproductive system, sex hormones, physiology of menstruation, fertilization, spermatogenesis, oogenesis, pregnancy and parturition

Introduction to Genetics
- Chromosomes, genes and DNA, protein synthesis, genetic pattern of inheritance

Recommended Books (Latest Editions)

3. Physiological basis of Medical Practice-Best and Tailor. Williams and Wilkins Co, Riverview, MI USA.
Reference Books

1. Physiological basis of Medical Practice-Best and Tailor. Williams and Wilkins Co, Riverview, MI USA.
3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterjee, Academic Publishers Kolkata.
Scope: This subject deals with classification and nomenclature of simple organic compounds, structural isomerism, intermediates forming in reactions, important physical properties, reactions and methods of preparation of these compounds. The syllabus also emphasizes on mechanisms and orientation of reactions.

Objectives: Upon completion of the course, the student shall be able to

1. Write the structure, name and the type of isomerism of the organic compound.
2. Write the reaction, name the reaction and orientation of reactions.
3. Account for reactivity/stability of compounds.
4. Identify/confirm the identification of organic compound.

- General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained.
- To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences.

Module 01

Classification, Nomenclature and Isomerism

- Classification of Organic Compounds.
- Common and IUPAC systems of nomenclature of organic compounds (up to 10 Carbons open chain and carbocyclic compounds).
- Structural isomerisms in organic compounds.

Module 02

Alkanes*, Alkenes* and Conjugated Dienes*

- SP\(^3\) hybridization in alkanes, Halogenation of alkanes, uses of paraffins.
- Stabilities of alkenes, SP\(^2\) hybridization in alkenes.
- \(E_1\) and \(E_2\) reactions – kinetics, order of reactivity of alkyl halides, rearrangement of carbocations, Saytzeff's orientation and evidences. \(E_1\) verses \(E_2\) reactions, Factors affecting \(E_1\) and \(E_2\) reactions. Ozonolysis, electrophilic addition reactions of alkenes, Markownikoff’s orientation, free radical addition reactions of alkenes, Anti Markownikoff’s orientation.
- Stability of conjugated dienes, Diel-Alder, electrophilic addition, free radical addition reactions of conjugated dienes, allylic rearrangement.
Module 03

Alkyl Halides*
- SN1 and SN2 reactions - kinetics, order of reactivity of alkyl halides, stereochemistry and rearrangement of carbocations.
- SN1 versus SN2 reactions, Factors affecting SN1 and SN2 reactions.
- Structure and uses of ethylchloride, Chloroform, trichloroethylene, tetrachloroethylene, dichloromethane, tetrachloromethane and iodoform.

Alcohols*
- Qualitative tests, Structure and uses of Ethyl alcohol, Methyl alcohol, chlorobutanol, Cetosteryl alcohol, Benz yl alcohol, Glycerol, Propylene glycol.

Module 04

Carbonyl compounds* (Aldehydes and ketones)
- Nucleophilic addition, Electromeric effect, aldol condensation, Crossed Aldol condensation, Cannizzaro reaction, Crossed Cannizzaro reaction, Benzoin condensation, Perkin condensation, qualitative tests, Structure and uses of Formaldehyde, Paraldehyde,Acetone,Chloral hydrate, Hexamine, Benzaldehyde, Vanilin, Cinnamaldehyde.

Module 05

Carboxylic acids*
- Acidity of carbox ylic acids, effect of substituent’s on acidity, inductive effect and qualitative tests for carboxylic acids, amide and ester.
- Structure and Uses of Acetic acid, Lactic acid, Tartaric acid, Citric acid, Succinic acid. Oxalic acid, Salicylic acid, Benzoic acid, Benzyl benzoate, Dimethyl phthalate, Methyl salicylate and Acetyl salicylic acid.

Aliphatic amines*
- Basicity, effect of substituent on Basicity.
- Qualitative test, Structure and uses of Ethanolamine, Ethylenediamine, Amphetamine.

Recommended Books (Latest Editions)
5. Reaction and reaction mechanism by Ahluwaliah/Chatwal.
Scope: Biochemistry deals with complete understanding of the molecular levels of the chemical process associated with living cells. The scope of the subject is providing biochemical facts and the principles to understand metabolism of nutrient molecules in physiological and pathological conditions. It is also emphasizing on genetic organization of mammalian genome and hetero and autocatalytic functions of DNA.

Objectives: Upon completion of course student shell able to

1. Understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes.
2. Understand the metabolism of nutrient molecules in physiological and pathological conditions.
3. Understand the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins.

Module 01 08 Hours

Biomolecules
- Introduction, classification, chemical nature and biological role of carbohydrate, lipids, nucleic acids, amino acids and proteins.

Bioenergetics
- Concept of free energy, endergonic and exergonic reaction, Relationship between free energy, enthalpy and entropy; Redox potential.
- Energy rich compounds; classification; biological significances of ATP and cyclic AMP.

Module 02 10 Hours

Carbohydrate Metabolism
- Glycolysis – Pathway, energetics and significance.
- Citric acid cycle- Pathway, energetics and significance.
- HMP shunt and its significance; Glucose-6-Phosphate dehydrogenase (G6PD) deficiency.
- Glycogen metabolism Pathways and glycogen storage diseases (GSD).
- Gluconeogenesis- Pathway and its significance.
- Hormonal regulation of blood glucose level and Diabetes mellitus.

Biological Oxidation
- Electron transport chain (ETC) and its mechanism.
- Oxidative phosphorylation and its mechanism and substrate phosphorylation.
- Inhibitors ETC and oxidative phosphorylation/Uncouplers.
Module 03

Lipid Metabolism
- β-Oxidation of saturated fatty acid (Palmitic acid).
- Formation and utilization of ketone bodies; ketoacidosis.
- De novo synthesis of fatty acids (Palmitic acid).
- Biological significance of cholesterol and conversion of cholesterol into bile acids, steroid hormone and vitamin D.
- Disorders of lipid metabolism: Hypercholesterolemia, atherosclerosis, fatty liver and obesity.

Amino Acid Metabolism
- General reactions of amino acid metabolism: Transamination, deamination and decarboxylation, urea cycle and its disorders.
- Catabolism of phenylalanine and tyrosine and their metabolic disorders (Phenyketonuria, Albinism, alkeptonuria, tyrosinemia).
- Synthesis and significance of biological substances; 5-HT, melatonin, dopamine, noradrenaline, adrenaline.
- Catabolism of heme; hyperbilirubinemia and jaundice.

Module 04

Nucleic Acid Metabolism and Genetic Information Transfer
- Biosynthesis of purine and pyrimidine nucleotides.
- Catabolism of purine nucleotides and Hyperuricemia and Gout disease.
- Organization of mammalian genome.
- Structure of DNA and RNA and their functions DNA replication (semi conservative model).
- Transcription or RNA synthesis.
- Genetic code, Translation or Protein synthesis and inhibitors.

Module 05

Enzymes
- Introduction, properties, nomenclature and IUB classification of enzymes.
- Enzyme kinetics (Michaelis plot, Line Weaver Burke plot) Enzyme inhibitors with examples.
- Regulation of enzymes: enzyme induction and repression, allosteric enzymes regulation.
- Therapeutic and diagnostic applications of enzymes and isoenzymes.
- Coenzymes –Structure and biochemical functions.

Recommended Books (Latest Editions)
7. Outlines of Biochemistry by Conn and Stumpf.
Scope: Pathophysiology is the study of causes of diseases and reactions of the body to such disease producing causes. This course is designed to impart a thorough knowledge of the relevant aspects of pathology of various conditions with reference to its pharmacological applications, and understanding of basic pathophysiological mechanisms. Hence it will not only help to study the syllabus of pathology, but also to get baseline knowledge required to practice medicine safely, confidently, rationally and effectively.

Objectives: Upon completion of the subject, student shall be able to
1. Describe the etiology and pathogenesis of the selected disease states.
2. Name the signs and symptoms of the diseases.
3. Mention the complications of the diseases.

Module 01

Basic Principles of Cell Injury and Adaptation

Basic Mechanism Involved In The Process of Inflammation and Repair
- Introduction, Clinical signs of inflammation, Different types of Inflammation, Mechanism of Inflammation – Alteration in vascular permeability and blood flow, migration of WBC’s, Mediators of inflammation, Basic principles of wound healing in the skin, Pathophysiology of Atherosclerosis.

Module 02

Cardiovascular System
- Hypertension, congestive heart failure, ischemic heart disease (angina, myocardial infarction, atherosclerosis and arteriosclerosis).

Respiratory System
- Asthma, Chronic obstructive airways diseases.

Renal System
- Acute and chronic renal failure.
Module 03

Haematological Diseases
- Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, haemophilia.

Endocrine System
- Diabetes, thyroid diseases, disorders of sex hormones

Nervous System
- Epilepsy, Parkinson’s disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer’s disease.

Gastrointestinal System
- Peptic Ulcer.

Module 04

Gastrointestinal System
- Inflammatory bowel diseases, jaundice, hepatitis (A, B, C, D, E, F) alcoholic liver disease.

Disease of Bones and Joints
- Rheumatoid arthritis, osteoporosis and gout.

Principles of Cancer
- Classification, etiology and pathogenesis of cancer.

Module 05

Infectious diseases
- Meningitis, Typhoid, Leprosy, Tuberculosis

Urinary Tract Infections

Sexually Transmitted Diseases
- AIDS, Syphilis, Gonorrhea

Recommended Books (Latest Editions)

1. Vinay Kumar, Abul K. Abas, Jon C. Aster; Robbins and Cotran Pathologic Basis of Disease; South Asia edition; India; Elsevier.
2. Harsh Mohan; Text book of Pathology; India; Jaypee Publications.
3. Laurence B, Bruce C, Bjorn K.; Goodman Gilman’s The Pharmacological Basis of Therapeutics; New York; McGraw-Hill.
5. Nicki R. Colledge, Brian R. Walker, Stuart H. Ralston; Davidson’s Principles and Practice of Medicine; London; ELBS/Churchill Livingstone.
8. Roger Walker, Clive Edwards; Clinical Pharmacy and Therapeutics; London; Churchill Livingstone publication.

Recommended Journals
1. The Journal of Pathology. ISSN: 1096-9896 (Online).
2. The American Journal of Pathology. ISSN: 0002-9440.
3. Pathology. 1465-3931 (Online).
5. Indian Journal of Pathology and Microbiology. ISSN-0377-4929.
Course Code | Course Title | Teaching Load | Marks | Exam (hrs) | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BP205T</td>
<td>Computer Applications in Pharmacy</td>
<td>3 L - T - P</td>
<td>25</td>
<td>50 Int. Ext.</td>
<td>1 Int. 2 Ext.</td>
</tr>
</tbody>
</table>

Scope: This subject deals with the introduction Database, Database Management system, and computer application in clinical studies and use of databases.

Objectives: Upon completion of the course the student shall be able to

1. Know the various types of application of computers in pharmacy.
2. Know the various types of databases.
3. Know the various applications of databases in pharmacy.

Module 01

06 Hours

Number System
- Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One’s complement, Two’s complement method, binary multiplication, binary division.

Concept of Information Systems and Software
- Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project.

Module 02

06 hours

Web Technologies
- Introduction to HTML, XML, CSS and Programming languages, introduction to web servers and Server Products
- Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database

Module 03

06 hours

Application of computers in Pharmacy
- Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile technology and adherence monitoring.
Module 04 06 Hours

Bioinformatics
- Introduction, Objective of Bioinformatics, Bioinformatics Databases, Concept of Bioinformatics, Impact of Bioinformatics in Vaccine Discovery.

Module 05 06 Hours

Computers as Data Analysis in Preclinical Development
- Chromatographic data analysis (CDS), Laboratory Information management.
- System (LIMS) and Text Information Management System (TIMS).

Recommended books (Latest edition)
Scope: Environmental Sciences is the scientific study of the environmental system and the status of its inherent or induced changes on organisms. It includes not only the study of physical and biological characters of the environment but also the social and cultural factors and the impact of man on environment.

Objectives: Upon completion of the course, the student shall be able to:

1. Create the awareness about environmental problems among learners.
2. Impart basic knowledge about the environment and its allied problems.
3. Develop an attitude of concern for the environment.
4. Motivate learner to participate in environment protection and environment improvement.
5. Acquire skills to help the concerned individuals in identifying and solving environmental problems.

Module 01

The Multidisciplinary nature of environmental studies

Natural Resources

- Renewable and non-renewable resources: Natural resources and associated problems
 Forest resources; b) Water resources; c) Mineral resources; d) Food resources; e) Energy resources; f) Land resources: Role of an individual in conservation of natural resources.

Module 02

Ecosystems

- Concept of an ecosystem.
- Structure and function of an ecosystem.
- Introduction, types, characteristic features, structure and function of the ecosystems: Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Module 03

- Environmental Pollution: Air pollution; Water pollution; Soil pollution

Recommended Books (Latest edition):

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

1. To study the integumentary and special senses using specimen, models, etc.
2. To study the nervous system using specimen, models, etc.
3. To study the endocrine system using specimen, models, etc.
4. To demonstrate the general neurological examination.
5. To demonstrate the function of olfactory nerve.
6. To examine the different types of taste.
7. To demonstrate the visual acuity.
8. To demonstrate the reflex activity.
9. Recording of body temperature.
10. To demonstrate positive and negative feedback mechanism.
11. Determination of tidal volume and vital capacity.
12. Study of digestive, respiratory, cardiovascular systems, urinary and reproductive systems with the help of models, charts and specimens.
13. Recording of basal mass index.
15. Demonstration of total blood count by cell analyser.
16. Permanent slides of vital organs and gonads.

Recommended Books (Latest Editions)

1. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee Brothers medical publishers, New Delhi.
1. Systematic qualitative analysis of unknown organic compounds like
 a. Preliminary test: Color, odour, aliphatic/aromatic compounds, saturation and unsaturation, etc.
 b. Detection of elements like Nitrogen, Sulphur and Halogen by Lassaigne’s test.
 c. Solubility test
 e. Melting point/Boiling point of organic compounds
 f. Identification of the unknown compound from the literature using melting point/ boiling point.
 g. Preparation of the derivatives and confirmation of the unknown compound by melting point/ boiling point.
 h. Minimum 05 unknown organic compounds to be analysed systematically.

2. Preparation of suitable solid derivatives from organic compounds.
3. Construction of molecular models.

Recommended Books (Latest Editions)

1. Practical Organic Chemistry by Mann and Saunders.
4. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP209P</td>
<td>Biochemistry</td>
<td>- - - - 4</td>
<td>15</td>
<td>35</td>
<td>4</td>
</tr>
</tbody>
</table>

1. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose and starch).
2. Identification tests for Proteins (albumin and Casein).
3. Quantitative analysis of reducing sugars (DNSA method) and Proteins (Biuret method).
4. Qualitative analysis of urine for abnormal constituents.
5. Determination of blood creatinine.
6. Determination of blood sugar.
7. Determination of serum total cholesterol.
8. Preparation of buffer solution and measurement of pH.
9. Study of enzymatic hydrolysis of starch.
11. Study the effect of Temperature on Salivary amylase activity.
12. Study the effect of substrate concentration on salivary amylase activity.

Recommended Books (Latest Editions)

1. Practical Biochemistry by R.C. Gupta and S. Bhargavan.
2. Introduction of Practical Biochemistry by David T. Plummer.
3. Practical Biochemistry for Medical students by Rajagopal and Ramakrishna.
4. Practical Biochemistry by Harold Varley.
1. Design a questionnaire using a word processing package to gather information about a particular disease.
2. Create a HTML web page to show personal information.
3. Retrieve the information of a drug and its adverse effects using online tools.
4. Creating mailing labels Using Label Wizard, generating label in MS WORD.
5. Create a database in MS Access to store the patient information with the required fields using access.
6. Design a form in MS Access to view, add, delete and modify the patient record in the database.
7. Generating report and printing the report from patient database.
10. Creating and working with queries in MS Access.
11. Exporting Tables, Queries, Forms and Reports to web pages.
12. Exporting Tables, Queries, Forms and Reports to XML pages.

Recommended books (Latest edition)

3rd SEMESTER
Course Code	Course Title	Teaching Load	Marks	Exam (hrs)	Credits
BP301T | Pharmaceutical Organic Chemistry –II | 3 1 - | 25 75 | 1 3 | 4 |

Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Also studied here is reactivity of organic compounds. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus.

Objectives: Upon completion of the course, the student shall be able to

1. Write the structure, name and the type of isomerism of the organic compound.
2. Write the reaction, name the reaction and orientation of reactions.
3. Account for reactivity/stability of compounds.
4. Prepare organic compounds.

- General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained.
- To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences.

Module 01

Benzenex and Its Derivatives

- Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Huckel’s rule.
- Reactions of benzene - nitration, sulphonation, halogenation- reactivity, Friedelcrafts alkylation- reactivity, limitations, Friedelcrafts acylation.
- Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction.
- Structure and uses of DDT, Saccharin, BHC and Chloramine.

Module 02

Phenols

- Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols.

Aromatic Amines

- Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts

Aromatic Acids

- Acidity, effect of substituents on acidity and important reactions of benzoic acid.
Module 03
Fats and Oils
- Fatty acids – reactions.
- Hydrolysis, Hydrogenation, Saponification and Rancidity of oils, Drying oils.
- Analytical constants – Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value – significance and principle involved in their determination.

Module 04
Polynuclear Hydrocarbons
- Synthesis, reactions.
- Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives.

Module 05
Cycloalkanes*
- Stabilities – Baeyer’s strain theory, limitation of Baeyer’s strain theory, Coulson and Moffitt’s modification, Sachse Mohr’s theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only.

Recommended Books (Latest Editions)
Scope: The course deals with the various physical and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course, student shall be able to

1. Understand various physicochemical properties of drug molecules in the designing the dosage forms.
2. Know the principles of chemical kinetics and to use them for stability testing and determination of expiry date of formulations.
3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Module 01
Solubility of Drugs
- Solubility expressions, mechanisms of solute solvent interactions, ideal solubility parameters, solvation and association, quantitative approach to the factors influencing solubility of drugs, diffusion principles in biological systems. Solubility of gas in liquids, solubility of liquids in liquids, (Binary solutions, ideal solutions) Raoult’s law, real solutions. Partially miscible liquids, Critical solution temperature and applications. Distribution law, its limitations and applications.

Module 02
States of Matter and Properties of Matter
- State of matter, changes in the state of matter, latent heats, vapour pressure, sublimation critical point, eutectic mixtures, gases, aerosols – inhalers, relative humidity, liquid complexes, liquid crystals, glassy states, solid-crystalline, amorphous and polymorphism.

Physicochemical Properties of Drug Molecules
- Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications.

Module 03
Surface and Interfacial Phenomenon
- Liquid interface, surface and interfacial tensions, surface free energy, measurement of surface and interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilisation, detergency, adsorption at solid interface.
Module 04

Complexation and Protein Binding

Module 05

pH, Buffers and Isotonic Solutions
- Sorensen’s pH scale, pH determination (electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions.

Recommended Books: (Latest Editions)

1. Physical Pharmacy by Alfred Martin.
2. Experimental Pharmaceutics by Eugene, Parott.
3. Tutorial Pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
7. Physical Pharmaceutics by Ramasamy C and Manavalan R.
9. Physical Pharmaceutics by C. V. S. Subramanyam
Scope: Study of all categories of microorganisms especially, for the production of alcohol, antibiotics, vaccines, vitamins enzymes etc.

Objectives: Upon completion of the subject, student shall be able to

1. Understand methods of identification, cultivation and preservation of various microorganisms.
2. To understand the importance and implementation of sterilization in pharmaceutical processing and industry. Learn sterility testing of pharmaceutical products.
3. Carried out microbiological standardization of pharmaceuticals.
4. Understand the cell culture technology and its applications in pharmaceutical industries.

Module 01

- Introduction, history of microbiology, its branches, scope and its importance.
- Introduction to Prokaryotes and Eukaryotes.
- Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total and viable count).
- Study of different types of phase contrast microscopy, dark field microscopy and electron microscopy.

Module 02

- Identification of bacteria using staining techniques (simple, Gram’s and acid fast staining) and biochemical tests (IMViC).
- Study of principle, procedure, merits, demerits and applications of physical, chemical gaseous, radiation and mechanical method of sterilization.
- Evaluation of the efficiency of sterilization methods.
- Equipments employed in large-scale sterilization.
- Sterility indicators.

Module 03

- Study of morphology, classification, reproduction/replication and cultivation of Fungi and Viruses.
- Classification and mode of action of disinfectants.
- Factors influencing disinfection, antiseptics and their evaluation for bacteriostatic and
bactericidal actions.
- Evaluation of bactericidal and Bacteriostatic.
- Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.

Module 04
08 Hours
- Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification.
- Principles and methods of different microbiological assay. Methods for standardization of antibiotics, vitamins and amino acids.
- Assessment of a new antibiotic.

Module 05
07 Hours
- Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage.
- Preservation of pharmaceutical products using antimicrobial agents, evaluation of microbial stability of formulations.
- Growth of animal cells in culture, general procedure for cell culture, Primary, established and transformed cell cultures.
- Application of cell cultures in pharmaceutical industry and research.

Recommended Books (Latest edition)
2. Prescott and Dunn, Industrial Microbiology, CBS Publishers and Distributors, Delhi.
3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill.
5. Rose: Industrial Microbiology.
6. Probisher, Hinsdill et al: Fundamentals of Microbiology, Japan
7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
8. Peppler: Microbial Technology.
Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry.

Objectives: Upon completion of the course, student shall be able:

1. To know various unit operations used in Pharmaceutical industries.
2. To understand the material handling techniques.
3. To perform various processes involved in pharmaceutical manufacturing process.
4. To carry out various test to prevent environmental pollution.
5. To appreciate and comprehend significance of plant lay out design for optimum use of resources.
6. To appreciate the various preventive methods used for corrosion control in pharmaceutical industries.

Module 01
Flow of Fluids
- Types of manometers, Reynolds number and its significance, Bernoulli’s theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotometer.

Size Reduction
- Objectives, Mechanisms and Laws governing size reduction, factors affecting size reduction, principles, construction, working, uses, merits and demerits of Hammer mill, ball mill, fluid energy mill, Edge runner mill and end runner mill.

Size Separation
- Objectives, applications and mechanism of size separation, official standards of powders, sieves, size separation Principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, Air separator, Bag filter and elutriation tank.

Module 02
Heat Transfer
- Objectives, applications and Heat transfer mechanisms. Fourier’s law, Heat transfer by conduction, convection and radiation.
- Heat interchangers and heat exchangers.

Evaporation
- Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process. Principles, construction, working, uses, merits and
demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator and Economy of multiple effect evaporator.

Distillation
- Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation and molecular distillation.

Module 03 08 Hours

Drying
- Objectives, applications and mechanism of drying process, measurements and applications of Equilibrium Moisture content, rate of drying curve, principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer, spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.

Mixing

Module 04 08 Hours

Filtration

Centrifugation
- Objectives, principle and applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge and super centrifuge.

Module 05 07 Hours

Materials of Pharmaceutical Plant Construction, Corrosion and Its Prevention
- Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals, basic of material handling systems.

Recommended Books: (Latest Editions)
1. Introduction to chemical engineering – Walter L Badger and Julius Banchero.
2. Solid phase extraction, Principles, techniques and applications by Nigel J.K. Simpson.
3. Unit operation of chemical engineering – McCabe Smith.
5. Remington practice of pharmacy - Martin.
7. Physical pharmaceutics - C.V.S Subrahmanyan et al.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP305P</td>
<td>Pharmaceutical Organic Chemistry –II</td>
<td>-</td>
<td>4</td>
<td>15 35</td>
<td>2</td>
</tr>
</tbody>
</table>

Experiments Involving Laboratory Techniques

- Recrystallization.
- Steam distillation.

Determination of Following Oil Values (Including Standardization of Reagents)

- Acid value.
- Saponification value.
- Iodine value.

Preparation of Compounds

- Benzanilide/Phenyl benzoate/Acetanilide from Aniline/ Phenol/Aniline by acylation reaction.
- 2, 4, 6-Tribromo aniline/Para bromo acetanilide from Aniline/ Acetanilide by halogenation (Bromination) reaction.
- 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid / Nitro benzene by nitration reaction.
- Benzoic acid from Benzyl chloride by oxidation reaction.
- Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by hydrolysis reaction.
- 1-Phenyl azo-2-naphthol from Aniline by diazotization and coupling reactions.
- Benzil from Benzoin by oxidation reaction.
- Dibenzal acetone from Benzaldehyde by Claison Schmidt reaction
- Cinnamnic acid from Benzaldehyde by Perkin reaction
- P-Iodo benzoic acid from P- amino benzoic acid

Recommended Books (Latest Editions)

1. Practical Organic Chemistry by Mann and Saunders.
4. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP306P</td>
<td>Physical Pharmaceutics-I</td>
<td>-</td>
<td>4</td>
<td>15-35</td>
<td>4-4</td>
</tr>
</tbody>
</table>

1. Determination the solubility of drug at room temperature.
2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation.
3. Determination of Partition co-efficient of benzoic acid in benzene and water.
4. Determination of Partition co-efficient of Iodine in CCl4 and water.
5. Determination of % composition of NaCl in a solution using phenol-water system by CST method.
6. Determination of surface tension of given liquids by drop count and drop weight method.
7. Determination of HLB number of a surfactant by saponification method.

Recommended Books: (Latest Editions)

1. Physical Pharmacy by Alfred Martin.
2. Experimental Pharmaceutics by Eugene, Parott.
3. Tutorial Pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, MarcelDekkar Inc.
7. Physical Pharmaceutics by Ramasamy C and ManavalanR.
9. Physical Pharmaceutics by C.V.S. Subramanyam
1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology.
2. Sterilization of glassware, preparation and sterilization of media.
4. Staining methods- Simple, Grams staining and acid fast staining (Demonstration with practical).
5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques.
6. Microbiological assay of antibiotics by cup plate method and other methods.
7. Motility determination by Hanging drop method.
8. Sterility testing of pharmaceuticals.

Recommended Books (Latest edition)

3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill.
5. Rose: Industrial Microbiology.
6. Probisher, Hinsdill et al: Fundamentals of Microbiology, Japan
7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
8. Peppler: Microbial Technology.
1. Determination of radiation constant of brass, iron, unpainted and painted glass.
2. Steam distillation – To calculate the efficiency of steam distillation.
3. To determine the overall heat transfer coefficient by heat exchanger.
5. Determination of moisture content and loss on drying.
7. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, de humidifier.
8. Size analysis by sieving – To evaluate size distribution of tablet granulations – Construction of various size frequency curves including arithmetic and logarithmic probability plots.
9. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger’s, Bond’s coefficients, power requirement and critical speed of Ball Mill.
10. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such other major equipment.
11. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration and Thickness/ viscosity
12. To study the effect of time on the Rate of Crystallization.
13. To calculate the uniformity Index for given sample by using Double Cone Blender.

Recommended Books: (Latest Editions)

1. Introduction to chemical engineering – Walter L Badger and Julius Banchero.
2. Solid phase extraction, Principles, techniques and applications by Nigel J.K. Simpson.
3. Unit operation of chemical engineering – Mcebe Smith.
4. Pharmaceutical engineering principles and practices – C.V.S Subrahmanyam et al.
5. Remington practice of pharmacy- Martin.
7. Physical pharmaceutics - C.V.S Subrahmanyam et al.
4th SEMESTER
Scope: This subject imparts knowledge on stereo-chemical aspects of organic compounds and organic reactions, important named reactions, chemistry of important heterocyclic compounds. It also emphasizes on medicinal and other uses of organic compounds.

Objectives: At the end of the course, the student shall be able to

1. Understand the methods of preparation and properties of organic compounds.
2. Explain the stereo chemical aspects of organic compounds and stereo chemical reactions.
3. Know the medicinal uses and other applications of organic compounds.

Note: To emphasize on definition, types, mechanisms, examples, uses/applications

Module 01 10 Hours
Stereo Isomerism
- Optical isomerism – Optical activity, enantiomerism, diastereoisomerism, meso compounds.
- Elements of symmetry, chiral and achiral molecules.
- DL system of nomenclature of optical isomers, sequence rules, RS system of nomenclature of optical isomers.
- Reactions of chiral molecules.
- Racemic modification and resolution of racemic mixture.
- Asymmetric synthesis: partial and absolute.

Module 02 10 Hours
Geometrical Isomerism
- Nomenclature of geometrical isomers (Cis Trans, EZ, Syn Anti systems).
- Methods of determination of configuration of geometrical isomers.
- Conformational isomerism in Ethane, n-Butane and Cyclohexane.
- Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity.
- Stereospecific and stereoselective reactions.

Module 03 10 Hours
Heterocyclic Compounds
- Nomenclature and classification.
- Synthesis, reactions and medicinal uses of following compounds/derivatives.
- Pyrrole, Furan, and Thiophene.
- Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene.

Module 04

Synthesis, Reactions and Medicinal Uses of Following Compounds/Derivatives
- Pyrazole, Imidazole, Oxazole and Thiazole.
- Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of pyridine.

Synthesis and Medicinal Uses of
- Pyrimidine, Purine, azepines and their derivatives.

Module 05

Reactions of Synthetic Importance
- Metal hydride reduction (NaBH$_4$ and LiAlH$_4$), Clemmensen reduction, Birch reduction, Wolff-Kishner reduction.
- Oppenauer-oxidation and Dakin reaction.
- Beckmanns rearrangement and Schmidt rearrangement. Claisen-Schmidt condensation.

Recommended Books (Latest Editions)
1. Organic chemistry by I.L. Finar, Volume-I and II.
Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course, the student shall be able to

1. Understand the chemistry of drugs with respect to their pharmacological activity.
2. Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs.
3. Know the Structural Activity Relationship (SAR) of different class of drugs.
4. Write the chemical synthesis of some drugs.

Note: Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*).

Module 01

Medicinal Chemistry
- Introduction, History and development of medicinal chemistry.

Physicochemical properties in relation to biological action
- Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism.

Drug metabolism
- Drug metabolism principles- Phase I and Phase II.
- Factors affecting drug metabolism including stereo chemical aspects.

Module 02

Drugs acting on Autonomic Nervous System
- Adrenergic Neurotransmitters: Biosynthesis and catabolism of catecholamine.
- Adrenergic receptors (Alpha and Beta) and their distribution.

Sympathomimetic Agents: SAR of Sympathomimetic Agents
- Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine, Methyldopa, Clonidine, Dobutamine, Isoproterenol, Terbutaline, Salbutamol*, Bitolterol, Naphazoline, Oxymetazoline and Xylometazoline.
- Indirect acting agents: Hydroxyamphetamine, Pseudoephedrine, Propylhexedrine.
- Agents with mixed mechanism: Ephedrine, Metaraminol.

Adrenergic Antagonists
• Beta-agenergic blockers: SAR of beta blockers, Propranolol*, Metibranolol, Atenolol, Betazolol, Bisoprolol, Esmolol, Metoprolol, Labetolol, Carvedilol.

Module 03 10 Hours

Cholinergic Neurotransmitters
• Biosynthesis and catabolism of acetylcholine.
• Cholinergic receptors (Muscarinic and Nicotinic) and their distribution.

Parasympathomimetic Agents: SAR of Parasympathomimetic Agents
• Direct acting agents: Acetylcholine, Carbachol*, Bethanechol, Methacholine, Pilocarpine.
• Cholinesterase reactivator: Pralidoxime chloride.

Cholinergic Blocking Agents: SAR of cholinolytic agents
• Solanaceous alkaloids and analogues: Atropine sulphate, Hyoscyamine sulphate, Scopolamine hydrobromide, Homatropine hydrobromide, Ipratropium bromide*.
• Synthetic cholinergic blocking agents: Tropicamide, Cyclopentolate hydrochloride, Clidinium bromide, Dicyclomine hydrochloride*, Glycopyrrolate, Methantheline bromide, Propantheline bromide, Benztropine mesylate, Orphenadrine citrate, Biperidine hydrochloride, Procyclidine hydrochloride*, Tridihexethyl chloride, Isopropamide iodide, Ethopropazine hydrochloride.

Module 04 08 Hours

Drugs acting on Central Nervous System

Sedatives and Hypnotics
• Benzodiazepines: SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem
• Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mepobarbital, Amobarbital, Butabarbitral, Pentobarbital, Secobarbital

Miscellaneous
• Amides and imides: Glutethimide.

Antipsychotics
• Phenothiazine: SAR of Phenothiazine - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thioridazine hydrochloride, Piperacetazine hydrochloride, Prochlorperazine maleate, Trifluoperazine hydrochloride.
• Ring Analogues of Phenothiazine: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine.
• Fluro buterophenones: Haloperidol, Droperidol, Risperidone.
• Beta amino ketones: Molindone hydrochloride.
Benzamides: Sulpiroid.

Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsant action
- Barbiturates: Phenobarbitalone, Metharbitalone.
- Oxazolidine diones: Trimethadione, Paramethadione.
- Succinimides: Phenoximide, Methsuximide, Ethosuximide*.
- Urea and monoacylureas: Phenacemide, Carbamazepine*.
- Benzodiazepines: Clonazepam.
- Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate.

Module 05
07 Hours

Drugs acting on Central Nervous System

General Anaesthetics
- Inhalation anesthetics: Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane.
- Ultra short acting barbiturates: Methohexitol sodium*, Thiormylal sodium, Thiopental sodium.
- Dissociative anesthetics: Ketamine hydrochloride.*

Narcotic and Non-Narcotic Analgesics
- Narcotic antagonists: Nalorphine hydrochloride, Levallorphan tartrate, Naloxone hydrochloride.

Anti-Inflammatory Agents

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
Scope: The course deals with the various physical and physicochemical properties, and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course, student shall be able to

1. Understand various physicochemical properties of drug molecules in the designing the dosage forms
2. Know the principles of chemical kinetics and to use them for stability testing and determination of expiry date of formulations
3. Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Module 01

Colloidal Dispersions
- Classification of dispersed systems and their general characteristics, size and shapes of colloidal particles, classification of colloids and comparative account of their general properties.
- Optical, kinetic and electrical properties. Effect of electrolytes, coacervation, peptization and protective action.

Module 02

Rheology
- Newtonian systems, law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling Sphere, rotational viscometers.

Deformation of Solids
- Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus.

Module 03

Coarse dispersion
- Suspension, interfacial properties of suspended particles, settling in suspensions, formulation of flocculated and deflocculated suspensions.
- Emulsions and theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions, preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method.
Module 04

10 Hours

Micromeretics
- Particle size and distribution, mean particle size, number and weight distribution, particle number, methods for determining particle size by different methods, counting and separation method, particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness and flow properties.

Module 05

10 Hours

Drug Stability
- Reaction kinetics: zero, pseudo-zero, first and second order, units of basic rate constants, determination of reaction order.
- Physical and chemical factors influencing the chemical degradation of pharmaceutical product: temperature, solvent, ionic strength, dielectric constant, specific and general acid base catalysis, Simple numerical problems.
- Stabilization of medicinal agents against common reactions like hydrolysis and oxidation.
- Accelerated stability testing in expiration dating of pharmaceutical dosage forms. Photolytic degradation and its prevention.

Recommended Books: (Latest Editions)
1. Physical Pharmacy by Alfred Martin.
2. Experimental pharmaceutics by Eugene, Parott.
3. Tutorial pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
7. Physical Pharmaceutics by Ramasamy C, and Manavalan R.
Scope: The main purpose of the subject is to understand what drugs do to the living organisms and how their effects can be applied to therapeutics. The subject covers the information about the drugs like, mechanism of action, physiological and biochemical effects (pharmacodynamics) as well as absorption, distribution, metabolism and excretion (pharmacokinetics) along with the adverse effects, clinical uses, interactions, doses, contraindications and routes of administration of different classes of drugs.

Objectives: Upon completion of this course, the student should be able to

1. Understand the pharmacological actions of different categories of drugs.
2. Explain the mechanism of drug action at organ system/sub cellular/macromolecular levels.
3. Apply the basic pharmacological knowledge in the prevention and treatment of various diseases.
4. Observe the effect of drugs on animals by simulated experiments.
5. Appreciate correlation of pharmacology with other biomedical sciences.

Module 01 08 hours

General Pharmacology
- Introduction to Pharmacology- Definition, historical landmarks and scope of pharmacology, nature and source of drugs, essential drugs concept and routes of drug administration, Agonists, antagonists (competitive and non competitive), spare receptors, addiction, tolerance, dependence, tachyphylaxis, idiosyncrasy, allergy.
- Pharmacokinetics- Membrane transport, absorption, distribution, metabolism and excretion of drugs. Enzyme induction, enzyme inhibition, kinetics of elimination.

Module 02 12 Hours

General Pharmacology
- Pharmacodynamics- Principles and mechanisms of drug action. Receptor theories and classification of receptors, regulation of receptors. drug receptors interactions signal transduction mechanisms, G-protein–coupled receptors, ion channel receptor, transmembrane enzyme linked receptors, transmembrane JAK-STAT binding receptor and receptors that regulate transcription factors, dose response relationship, therapeutic index, combined effects of drugs and factors modifying drug action.
- Adverse drug reactions.
- Drug interactions (pharmacokinetic and pharmacodynamic).
- Drug discovery and clinical evaluation of new drugs -Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance.
Module 03
Pharmacology of Drugs Acting On Peripheral Nervous System
- Organization and function of ANS.
- Neurohumoral transmission, co-transmission and classification of neurotransmitters.
- Parasympathomimetics, Parasympatholytics, Sympathomimetics, sympatholytics.

Module 04
Pharmacology of Drugs Acting On Central Nervous System
- Neurohumoral transmission in the C.N.S. special emphasis on importance of various neurotransmitters like with GABA, Glutamate, Glycine, serotonin, dopamine.
- General anesthetics and pre-anesthetics.
- Sedatives, hypnotics and centrally acting muscle relaxants. d. Anti-epileptics
- Alcohols and disulfiram.
- Local anesthetic agents.
- Drugs used in myasthenia gravis and glaucoma.

Module 05
Pharmacology of drugs acting on central nervous system
- Psychopharmacological agents: Antipsychotics, antidepressants, anti-anxiety agents, anti-manics and hallucinogens.
- Drugs used in Parkinson’s disease and Alzheimer’s disease.
- CNS stimulants and nootropics.
- Opioid analgesics and antagonists.
- Drug addiction, drug abuse, tolerance and dependence.

Recommended Books (Latest Editions)
8. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras Medical Publisher.
Scope: The subject involves the fundamentals of Pharmacognosy like scope, classification of crude drugs, their identification and evaluation, phytochemicals present in them and their medicinal properties.

Objectives: Upon completion of the course, the student shall be able

1. To know the techniques in the cultivation and production of crude drugs.
2. To know the crude drugs, their uses and chemical nature.
3. Know the evaluation techniques for the herbal drugs.
4. To carry out the microscopic and morphological evaluation of crude drugs.

Module 01

Introduction to Pharmacognosy
- Definition, history, scope and development of Pharmacognosy.
- Sources of Drugs – Plants, Animals, Marine and Tissue culture.
- Organized drugs, unorganized drugs (dried latex, dried juices, dried extracts, gums and mucilages, oleoresins and oleo-gum-resins).

Classification of Drugs
- Alphabetical, morphological, taxonomical, chemical, pharmacological, chemo and sero taxonomical classification of drugs.

Quality control of Drugs of Natural Origin
- Adulteration of drugs of natural origin.
- Evaluation by organoleptic, microscopic, physical, chemical and biological methods and properties.
- Quantitative microscopy of crude drugs including lycopodium spore method, leaf constants, camera lucida and diagrams of microscopic objects to scale with camera lucida.

Module 02

Cultivation, Collection, Processing and Storage of Drugs of Natural Origin
- Cultivation and Collection of drugs of natural origin.
- Factors influencing cultivation of medicinal plants.
- Plant hormones and their applications.
- Polyploidy, mutation and hybridization with reference to medicinal plants.

Conservation of Medicinal Plants
Module 03 07 Hours

Plant Tissue Culture
- Historical development of plant tissue culture, types of cultures, Nutritional requirements, growth and their maintenance.
- Applications of plant tissue culture in pharmacognosy.
- Edible vaccines.

Module 04 10 Hours

Pharmacognosy in Various Systems of Medicine
- Role of Pharmacognosy in allopathy and traditional systems of medicine namely, Ayurveda, Unani, Siddha, Homeopathy and Chinese systems of medicine.

Introduction to Secondary Metabolites
- Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins.

Module 05 08 Hours

Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs

Plant Products
- Fibers - Cotton, Jute, Hemp.
- Hallucinogens, Teratogens, Natural allergens.

Primary Metabolites: General introduction, detailed study with respect to chemistry, sources, preparation, evaluation, preservation, storage, therapeutic used and commercial utility as Pharmaceutical Aids and/or Medicines for the following Primary metabolites:
- Carbohydrates: Acacia, Agar, Tragacanth, Honey.
- Proteins and Enzymes: Gelatin, casein, proteolytic enzymes (Papain, bromelain, serratiopeptidase, urokinase, streptokinase, pepsin).
- Lipids(Waxes, fats, fixed oils): Castor oil, Chaulmoogra oil, Wool Fat, Bees Wax
- Marine Drugs: Novel medicinal agents from marine sources.

Recommended Books: (Latest Editions)
6. Herbal drug industry by R.D. Choudhary Eastern Publisher, New Delhi.
7. Essentials of Pharmacognosy, Dr.SH.Ansari, Birla publications, New Delhi.
8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP406P</td>
<td>Medicinal Chemistry – I</td>
<td>-</td>
<td>4</td>
<td>15 35</td>
<td>4 4 2</td>
</tr>
</tbody>
</table>

1. Preparation of Drugs/ Intermediates
 a) 1,3-pyrazole
 b) 1,3-oxazole
 c) Benzimidazole
 d) Benztriazole
 e) 2,3- diphenyl quinoxaline
 f) Benzocaine
 g) Phenytoin
 h) Phenothiazine
 i) Barbiturate

2. Assay of Drugs
 a) Chlorpromazine
 b) Phenobarbitone
 c) Atropine
 d) Ibuprofen
 e) Aspirin
 f) Furosemide

3. Determination of Partition Coefficient For Any Two Drugs

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP407P</td>
<td>Physical Pharmaceutics-II</td>
<td>-</td>
<td>4</td>
<td>15 35</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Determination of particle size, particle size distribution using sieving method.
3. Determination of bulk density, true density and porosity.
4. Determine the angle of repose and influence of lubricant on angle of repose.
5. Determination of viscosity of liquid using Ostwald’s viscometer.
6. Determination sedimentation volume with effect of different suspending agent.
7. Determination sedimentation volume with effect of different concentration of single suspending agent.
8. Determination of viscosity of semisolid by using Brookfield viscometer.
9. Determination of reaction rate constant first order.
10. Determination of reaction rate constant second order.

Recommended Books: (Latest Editions)

1. Physical Pharmacy by Alfred Martin.
2. Experimental pharmaceutics by Eugene, Parott.
3. Tutorial pharmacy by Cooper and Gunn.
5. Liberman H.A, Lachman C., Pharmaceutical Dosage forms, Tablets, Volume-1 to 3, Marcel Dekkar Inc.
7. Physical Pharmaceutics by Ramasamy C, and Manavalan R.
I.K. Gujral Punjab Technical University
B. Pharmacy/Batch 2017

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP408P</td>
<td>Pharmacology-I</td>
<td>-</td>
<td>4</td>
<td>15 35</td>
<td>4 4 2</td>
</tr>
</tbody>
</table>

1. Introduction to experimental pharmacology.
2. Commonly used instruments in experimental pharmacology.
3. Study of common laboratory animals.
4. Maintenance of laboratory animals as per CPCSEA guidelines.
5. Common laboratory techniques: Blood withdrawal, serum and plasma separation, anesthetics and euthanasia used for animal studies.
6. Study of different routes of drugs administration in mice/rats.
7. Study of effect of hepatic microsomal enzyme inducers on the phenobarbitone sleeping time in mice.
8. Effect of drugs on ciliary motility of frog oesophagus.
9. Effect of drugs on rabbit eye.
10. Effects of skeletal muscle relaxants using rota-rod apparatus.
11. Effect of drugs on locomotor activity using actophotometer.
12. Anticonvulsant effect of drugs by MES and PTZ method.
13. Study of stereotype and anti-catatonic activity of drugs on rats/mice.
15. Study of local anesthetics by different methods.

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)

8. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras Medical Publisher.
1. Analysis of crude drugs by chemical tests: (i) Tragaccanth (ii) Acacia (iii) Agar (iv) Gelatin (v) starch (vi) Honey (vii) Castor oil.
2. Determination of stomatal number and index.
3. Determination of vein islet number, vein islet termination and palisade ratio.
4. Determination of size of starch grains, calcium oxalate crystals by eye piece micrometer.
5. Determination of Fiber length and width.
6. Determination of number of starch grains by Lycopodium spore method.
7. Determination of Ash value.
8. Determination of Extractive values of crude drugs.
9. Determination of moisture content of crude drugs.
10. Determination of swelling index and foaming.

Recommended Books: (Latest Editions)

6. Herbal drug industry by R.D. Choudhary Eastern Publisher, New Delhi.
7. Essentials of Pharmacognosy, Dr. SH. Ansari, Birla publications, New Delhi.
8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae.
5th SEMESTER
Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course, the student shall be able to

1. Understand the chemistry of drugs with respect to their pharmacological activity.
2. Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs.
3. Know the Structural Activity Relationship of different class of drugs.
4. Study the chemical synthesis of selected drugs.

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

Module 01 10 Hours

Antihistaminic Agents

- Histamine, receptors and their distribution in the human body.
- H₂-Antagonists: Cimetidine*, Famotidine, Ranitidin.

Gastric Proton Pump Inhibitors

- Omeprazole, Lansoprazole, Rabeprazole, Pantoprazole.

Anti-Neoplastic Agents

- Alkylating Agents: Meclorethamine*, Cyclophosphamide, Melphalan, Chlorambucil, Busulfan, Thiopeta.
- Antibiotics: Dactinomycin, Daunorubicin, Doxorubicin, Bleomycin.
- Plant products: Etoposide, Vinblastin sulphate, Vincristin sulphate
- Miscellaneous: Cisplatin, Mitotane.
Module 02 10 Hours

Anti-Anginal
- Calcium Channel Blockers: Verapamil, Bepridil hydrochloride, Diltiazem hydrochloride, Nifedipine, Amlodipine, Felodipine, Nicardipine, Nimodipine.

Diuretics
- Carbonic anhydrase inhibitors: Acetazolamide*, Methazolamide, Dichlorphenamide.
- Thiazides: Chlorothiazide*, Hydrochlorothiazide, Hydroflumethiazide, Cyclothiazide.
- Loop diuretics: Furosemide*, Bumetanide, Ethacrynic acid.
- Potassium sparing Diuretics: Spironolactone, Triamterene, Amiloride.
- Osmotic Diuretics: Mannitol.

Anti-Hypertensive Agents
- Timolol, Captopril, Lisinopril, Enalapril, Benazepril hydrochloride, Quinapril hydrochloride, Methyldopate hydrochloride*, Clonidine hydrochloride, Guanethidine monosulphate, Guanabenz acetate, Sodium nitroprusside, Diazoxide, Minoxidil, Reserpine, Hydralazine hydrochloride.

Module 03 10 Hours

Anti-Arrhythmic Drugs
- Quinidine sulphate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcanide hydrochloride, Amiodarone, Sotalol.

Anti-Hyperlipidemic Agents
- Clofibrate, Lovastatin, Cholesteramine and Cholestipol.

Coagulant and Anticoagulants

Drugs used in Congestive Heart Failure
- Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan.

Module 04 08 Hours

Drugs acting on Endocrine System
- Nomenclature, Stereochemistry and metabolism of steroids.

Sex Hormones
- Testosterone, Nandralone, Progestrones, Oestriol, Oestradiol, Oestrone, Diethyl stilbestrol.

Drugs for Erectile Dysfunction
- Sildenafil, Tadalafil.

Oral Contraceptives
- Mifepristone, Norgestrel, Levonorgestrol

Corticosteroids
- Cortisone, Hydrocortisone, Prednisolone, Betamethasone, Dexamethasone
Thyroid and Anti-Thyroid Drugs
- L-Thyroxine, L-Thyronine, Propylthiouracil, Methimazole.

Module 05 07 Hours

Antidiabetic Agents
- Insulin and its preparations.

Local Anaesthetics
- SAR of local anaesthetics.
- Benzoic Acid derivatives: Cocaine, Hexylcaine, Meprylcaine, Cyclomethycaine, Piperocaine.
- Lidocaine/Anilide derivatives: Lignocaine, Mepivacaine, Prilocaine, Etidocaine.
- Miscellaneous: Phenacaine, Diperodon, Dibucaine.*

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
Scope: Course enables the student to understand and appreciate the influence of pharmaceutical additives and various pharmaceutical dosage forms on the performance of the drug product.

Objectives: Upon completion of the course, the student shall be able to

1. Know the various pharmaceutical dosage forms and their manufacturing techniques.
2. Know various considerations in development of pharmaceutical dosage forms.
3. Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality.

Module 01
Pre-formulation Studies
- Introduction to pre-formulation, goals and objectives, study of physicochemical characteristics of drug substances.
- Physical properties: Physical form (crystal and amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism
- Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerization
- BCS classification of drugs and its significant
- Application of pre-formulation considerations in the development of solid, liquid oral and parenteral dosage forms and its impact on stability of dosage forms.

Module 02
Tablets
- Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.
- Quality control tests: In process and finished product tests.

Liquid Orals
- Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in pharmacopoeia.
Module 03 08 Hours

Capsules

Hard Gelatin Capsules
- In process and final product quality control tests for capsules.

Soft Gelatin Capsules
- Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests.
- Packing, storage and stability testing of soft gelatin capsules and their applications.

Pellets
- Introduction, formulation requirements, pelletization process, equipments for manufacture of pellets.

Module 04 10 Hours

Parenteral Products
- Definition, types, advantages and limitations. Pre-formulation factors and essential requirements, vehicles, additives, importance of isotonicity.
- Production procedure, production facilities and controls, aseptic processing,
- Formulation of injections, sterile powders, large volume parenterals and lyophilized products.
- Containers and closures selection, filling and sealing of ampoules, vials and infusion fluids. Quality control tests of parenteral products.

Ophthalmic Preparations
- Introduction, formulation considerations; formulation of eye drops, eye ointments and eye lotions; methods of preparation; labeling, containers; evaluation of ophthalmic preparations.

Module 05 10 Hours

Cosmetics
- Formulation and preparation of the following cosmetic preparations: lipsticks, shampoos, cold cream and vanishing cream, toothpastes, hair dyes and sunscreens.

Pharmaceutical Aerosols
- Definition, propellants, containers, valves, types of aerosol systems; formulation and manufacture of aerosols; Evaluation of aerosols; Quality control and stability studies.

Packaging Materials Science
- Materials used for packaging of pharmaceutical products, factors influencing choice of containers, legal and official requirements for containers, stability aspects of packaging materials, quality control tests.
Recommended Books: (Latest Editions)

2. Pharmaceutical dosage form - Parenteral medication vol- 1and2 by Liberman and Lachman.
3. Pharmaceutical dosage form disperse system VOL-1 by Liberman and Lachman.
6. Theory and Practice of Industrial Pharmacy by Liberman and Lachman.
7. Pharmaceutics- The science of dosage form design by M.E.Aulton, Churchill livingstone.
8. Introduction to Pharmaceutical Dosage Forms by H. C.Ansel, Lea and Febiger, Philadelphia.
Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on different systems of body and in addition, emphasis on the basic concepts of bioassay.

Objectives: Upon completion of this course, the student should be able to

1. Understand the mechanism of drug action and its relevance in the treatment of different diseases.
2. Demonstrate isolation of different organs/tissues from the laboratory animals by simulated experiments.
3. Demonstrate the various receptor actions using isolated tissue preparation.
4. Appreciate correlation of pharmacology with related medical sciences.

Module 01

Pharmacology of Drugs Acting on Cardio Vascular System
- Introduction to hemodynamic and electrophysiology of heart.
- Drugs used in congestive heart failure
- Anti-hypertensive drugs.
- Anti-anginal drugs.
- Anti-arrhythmic drugs.
- Anti-hyperlipidemic drugs.

Module 02

Pharmacology of Drugs Acting on Cardio Vascular System
- Drug used in the therapy of shock.
- Hematinics, coagulants and anticoagulants.
- Fibrinolytics and anti-platelet drugs.
- Plasma volume expanders.

Pharmacology of Drugs Acting on Urinary System
- Diuretics.
- Anti-diuretics.

Module 03

Autacoids and Related Drugs
- Introduction to autacoids and classification.
- Histamine, 5-HT and their antagonists.
• Prostaglandins, Thromboxanes and Leukotrienes.
• Angiotensin, Bradykinin and Substance P.
• Non-steroidal anti-inflammatory agents.
• Anti-gout drugs.
• Antirheumatic drugs.

Module 04
08 hours
Pharmacology of Drugs Acting on Endocrine System
• Basic concepts in endocrine pharmacology.
• Anterior Pituitary hormones- analogues and their inhibitors.
• Thyroid hormones- analogues and their inhibitors.
• Hormones regulating plasma calcium level- Parathormone, Calcitonin and Vitamin-D.
• Insulin, Oral Hypoglycemic agents and glucagon.
• ACTH and corticosteroids.

Module 05
07 hours
Pharmacology of Drugs Acting on Endocrine System
• Androgens and Anabolic steroids.
• Estrogens, progesterone and oral contraceptives.
• Drugs acting on the uterus.

Bioassay
• Principles and applications of bioassay.
• Types of bioassay
• Bioassay of insulin, oxytocin, vasopressin, ACTH, d-tubocurarine, digitalis, histamine and 5-HT.

Recommended Books (Latest Editions)
7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras Medical Publisher.
Scope: The main purpose of subject is to impart the students the knowledge of how the secondary metabolites are produced in the crude drugs, how to isolate and identify and produce them industrially. Also this subject involves the study of producing the plants and phytochemicals through plant tissue culture, drug interactions and basic principles of traditional system of medicine.

Objectives: Upon completion of the course, the student shall be able

1. To know the modern extraction techniques, characterization and identification of the herbal drugs and phytoconstituents.
2. To understand the preparation and development of herbal formulation.
3. To understand the herbal drug interactions.
4. To carryout isolation and identification of phytoconstituents.

Module 01

Metabolic Pathways in Higher Plants and Their Determination

- Brief study of basic metabolic pathways and formation of different secondary metabolites through these pathways- Shikimic acid pathway, Acetate pathways and Amino acid pathway.
- Study of utilization of radioactive isotopes in the investigation of Biogenetic studies.

Module 02

General introduction, composition, chemistry and chemical classes, biosources, therapeutic uses and commercial applications of following secondary metabolites:

Alkaloids
- Vinca, Rauwolfia, Belladonna, Opium.

Phenylpropanoids and Flavonoids
- Lignans, Tea, Ruta.

Steroids, Cardiac Glycosides and Triterpenoids
- Liquorice, Dioscorea, Digitalis.

Volatile Oils
- Mentha, Clove, Cinnamon, Fennel, Coriander.

Tannins
- Catechu, Pterocarpus.

Resins
- Benzoin, Guggul, Ginger, Asafoetida, Myrrh, Colophony.

Glycosides
- Senna, Aloes, Bitter Almond.

Iridoids, Other Terpenoids and Naphthaquinones
- Gentian, Artemisia, Taxus, Carotenoids.
Module 03

Isolation, Identification and Analysis of Phytoconstituents

Terpenoids
- Menthol, Citral, Artemisin.

Glycosides
- Glycerhetic acid and Rutin.

Alkaloids
- Atropine, Quinine, Reserpine, Caffeine.

Resins
- Podophyllotoxin, Curcumin.

Module 04

Industrial Production, Estimation and Utilization of the Following Phytoconstituents
- Forskoloin, Sennoside, Artemisinin, Diosgenin, Digoxin, Atropine, Podophyllotoxin, Caffeine, Taxol, Vincristine and Vinblastine.

Module 05

Basics of Phytochemistry
- Modern methods of extraction.
- Application of latest techniques like Spectroscopy, chromatography and electrophoresis in the isolation, purification and identification of crude drugs.

Recommended Books: (Latest Editions)

4. Herbal drug industry by R.D. Choudhary, Eastern Publisher, New Delhi.
5. Essentials of Pharmacognosy, Dr. SH. Ansari, Birla publications, New Delhi.
10. The formulation and preparation of cosmetic, fragrances and flavours.
12. Text Book of Biotechnology by Vyas and Dixit.
Scope: This course is designed to impart basic knowledge on important legislations related to the profession of pharmacy in India.

Objectives: Upon completion of the course, the student shall be able to understand:
1. The Pharmaceutical legislations and their implications in the development and marketing of pharmaceuticals.
3. The regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals.
4. The code of ethics during the pharmaceutical practice.

Module 01 10 Hours

Drugs and Cosmetics Act, 1940 and Its Rules 1945
- Objectives, Definitions, Legal definitions of schedules to the Act and Rules
- Import of drugs – Classes of drugs and cosmetics prohibited from import, Import under license or permit. Offences and penalties.
- Manufacture of drugs – Prohibition of manufacture and sale of certain drugs,
- Conditions for grant of license and conditions of license for manufacture of drugs, Manufacture of drugs for test, examination and analysis, manufacture of new drug, loan license and repacking license.

Module 02 10 Hours

Drugs and Cosmetics Act, 1940 and Its rules 1945.
- Labeling & Packing of drugs- General labeling requirements and specimen labels for drugs and cosmetics, List of permitted colors. Offences and penalties.
- Administration of the Act and Rules – Drugs Technical Advisory Board, Central drugs Laboratory, Drugs Consultative Committee, Government drug analysts, licensing authorities, controlling authorities, Drugs Inspectors.

Module 03 10 Hour

Pharmacy Act –1948
- Objectives, Definitions, Pharmacy Council of India; its constitution and functions, Education Regulations, State and Joint state pharmacy councils; constitution and functions, Registration of Pharmacists, Offences and Penalties.

Medicinal and Toilet Preparation Act –1955
- Objectives, Definitions, Licensing, Manufacture In bond and Outside bond, Export of

Narcotic Drugs and Psychotropic Substances Act-1985 and Rules
- Objectives, Definitions, Authorities and Officers, Constitution and Functions of narcotic & Psychotropic Consultative Committee, National Fund for Controlling the Drug Abuse, Prohibition, Control and Regulation, opium poppy cultivation and production of poppy straw, manufacture, sale and export of opium, Offences and Penalties.

Module 04 08 Hours
Study of Salient Features of Drugs and Magic Remedies Act and its rules
- Objectives, Definitions, Prohibition of certain advertisements, Classes of Exempted advertisements, Offences and Penalties.

Prevention of Cruelty to animals Act-1960
- Objectives, Definitions, Institutional Animal Ethics Committee, CPCSEA guidelines for Breeding and Stocking of Animals, Performance of Experiments, Transfer and acquisition of animals for experiment, Records, Power to suspend or revoke registration, Offences and Penalties.

National Pharmaceutical Pricing Authority
- Drugs Price Control Order (DPCO)- 2013. Objectives, Definitions, Sale prices of bulk drugs, Retail price of formulations, Retail price and ceiling price of scheduled formulations, National List of Essential Medicines (NLEM).

Module 05 07 Hours
Pharmaceutical Legislations
- A brief review, Introduction, Study of drugs enquiry committee, Health survey and development committee, Hathi committee and Mudaliar committee

Code of Pharmaceutical ethics
- Definition, Pharmacist in relation to his job, trade, medical profession and his profession, Pharmacist’s oath

Medical Termination of Pregnancy Act

Right to Information Act

Introduction to Intellectual Property Rights (IPR)

Recommended books: (Latest Edition)
1. Forensic Pharmacy by B. Suresh.
5. Drugs and Cosmetics Act/Rules by Govt. of India publications.
6. Medicinal and Toilet preparations act 1955 by Govt. of India publications.
7. Narcotic drugs and psychotropic substances act by Govt. of India publications.
8. Drugs and Magic Remedies act by Govt. of India publication.
Course Code | Course Title | Teaching Load | Marks | Exam (hrs) | Credits |
-------------|---------------------------|---------------|-------|------------|---------|
 | | L T P | Int. | Ext. | Int. | Ext. |
BP506P | Industrial Pharmacy-I | - - 4 | 15 | 35 | 4 | 4 | 2 |

1. Pre-formulation studies on paracetamol/asparin/or any other drug.
2. Preparation and evaluation of Paracetamol tablets.
3. Preparation and evaluation of Aspirin tablets.
5. Preparation and evaluation of Tetracycline capsules.
6. Preparation of Calcium Gluconate injection.
7. Preparation of Ascorbic Acid injection.
8. Quality control test of (as per IP) marketed tablets and capsules.
11. Evaluation of Glass containers (as per IP).

Recommended Books: (Latest Editions)

2. Pharmaceutical dosage form - Parenteral medication vol- 1and2 by Liberman and Lachman.
3. Pharmaceutical dosage form disperse system VOL-1 by Liberman and Lachman.
6. Theory and Practice of Industrial Pharmacy by Liberman and Lachman.
7. Pharmaceutics- The science of dosage form design by M.E.Aulton, Churchill livingstone.
8. Introduction to Pharmaceutical Dosage Forms by H. C.Ansel, Lea and Febiger, Philadelphia
1. Introduction to \textit{in-vitro} pharmacology and physiological salt solutions.
2. Effect of drugs on isolated frog heart.
3. Effect of drugs on blood pressure and heart rate of dog.
4. Study of diuretic activity of drugs using rats/mice.
5. DRC of acetylcholine using frog rectus abdominis muscle.
6. Effect of physostigmine and atropine on DRC of acetylcholine using frog rectus abdominis muscle and rat ileum respectively.
10. Bioassay of acetylcholine using rat ileum/colon by four point bioassay.
12. Determination of PD$_2$ value using guinea pig ileum.
13. Effect of spasmogens and spasmolytics using rabbit jejunum.
15. Analgesic activity of drug using central and peripheral methods

\textit{Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos.}

\textbf{Recommended Books (Latest Editions)}

7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras Medical Publisher.
Course Code | Course Title | Teaching Load | Marks | Exam (hrs) | Credits |
---|---|---|---|---|---|
BP508P | Pharmacognosy and Phytochemistry-II | - - 4 | 15 35 | 4 4 | 2 |

1. Morphology, histology and powder characteristics & extraction & detection of: Cinchona, Cinnamon, Senna, Clove, Ephedra, Fennel and Coriander
2. Exercise involving isolation & detection of active principles:
 a. Caffeine - from tea dust.
 b. Diosgenin from Dioscorea
 c. Atropine from Belladonna
 d. Sennosides from Senna
3. Separation of sugars by Paper chromatography
4. TLC of herbal extract
5. Distillation of volatile oils and detection of phytoconstituents by TLC
6. Analysis of crude drugs by chemical tests:
 a. Asafoetida
 b. Benzoin
 c. Colophony
 d. Aloes
 e. Myrrh

Recommended Books: (Latest Editions)

4. Herbal drug industry by R.D. Choudhary, Eastern Publisher, New Delhi.
5. Essentials of Pharmacognosy, Dr.SH.Ansari, Birla publications, New Delhi.
10. The formulation and preparation of cosmetic, fragrances and flavours.
12. Text Book of Biotechnology by Vyas and Dixit.
6th SEMESTER
Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasis on modern techniques of rational drug design like quantitative structure activity relationship (QSAR), Pro-drug concept, combinatorial chemistry and Computer aided drug design (CADD). The subject also emphasizes on the chemistry, mechanism of action, metabolism, adverse effects, Structure Activity Relationships (SAR), therapeutic uses and synthesis of important drugs.

Objectives: Upon completion of the course, student shall be able to

1. Understand the importance of drug design and different techniques of drug design.
2. Understand the chemistry of drugs with respect to their biological activity.
3. Know the metabolism, adverse effects and therapeutic value of drugs.
4. Know the importance of SAR of drugs.

Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted by (*).

Module 01 10 Hours

Antibiotics
Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

β-Lactam antibiotics
- Penicillin, Cepholsoporins, β- Lactamase inhibitors, Monobactams.

Aminoglycosides
- Streptomycin, Neomycin, Kanamycin.

Tetracyclines
- Tetracycline, Oxytetracycline, Chlortetracycline, Minocycline, Doxycycline.

Module 02 10 Hours

Antibiotics
Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.

Macrolide
- Erythromycin Clarithromycin, Azithromycin.

Miscellaneous
- Chloramphenicol*, Clindamycin.
Pro-drugs
- Basic concepts and application of prodrugs design.

Antimalarials
- Etiology of malaria.

Quinolines
- SAR, Quinine sulphate, Chloroquine*, Amodiaquine, Primaquine phosphate, Pamaquine*, Quinacrine hydrochloride, Mefloquine.
- Biguanides and dihydro triazines
- Cycloguanil pamoate, Proguanil.

Miscellaneous
- Pyrimethamine, Artesunate, Artemether, Atovoquone.

Module 03
10 Hours

Anti-Tubercular Agents

Synthetic Anti-Tubercular Agents
- Isoniozid*, Ethionamide, Ethambutol, Pyrazinamide, Para amino salicylic acid*.

Anti-Tubercular Antibiotics
- Rifampicin, Rifabutin, Cycloserine Streptomycine, Capreomycin sulphate.

Urinary Tract Anti-Infective Agents

Quinolones
- SAR of quinolones, Nalidixic Acid, Norfloxacine, Enoxacin, Ciprofloxacin*, Ofloxacin, Lomefloxcin, Sparfloxcin, Gatifloxacin, Moxifloxacin.

Miscellaneous
- Furazolidine, Nitrofurantoin*, Methanamine.

Antiviral Agents

Module 04
08 Hours

Antifungal Agents

Antifungal Antibiotics
- Amphotericin-B, Nystatin, Natamycin, Griseofulvin.

Synthetic Antifungal Agents
- Clotrimazole, Econazole, Butoconazole, Oxiconazole Tioconozole, Miconazole*, Ketoconazole, Terconazole, Itraconazole, Fluconazole, Naftifine hydrochloride, Tolnaftate*.

Anti-Protozoal Agents

Anthelmintics
- Diethylcarbamazine citrate*, Thiabendazole, Mebendazole*, Albendazole, Niclosamide,
Oxamniquine, Praziquantel, Ivermectin.

Sulphonamides and Sulphones

Folate Reductase Inhibitors
- Trimethoprim*, Cotrimoxazole.

Sulphones
- Dapsone*.

Module 05

07 Hours

Introduction to Drug Design
- Various approaches used in drug design.
- Physicochemical parameters used in quantitative structure activity relationship (QSAR) such as partition coefficient, Hammet’s electronic parameter, Tafts steric parameter and Hansch analysis.
- Pharmacophore modeling and docking techniques.

Combinatorial Chemistry
- Concept and applications of combinatorial chemistry: solid phase and solution phase synthesis.

Recommended Books (Latest Editions)

2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on respiratory and gastrointestinal system, infectious diseases, immuno-pharmacology and in addition, emphasis on the principles of toxicology and chronopharmacology.

Objectives: Upon completion of this course, the student should be able to:

1. Understand the mechanism of drug action and its relevance in the treatment of different infectious diseases.
2. Comprehend the principles of toxicology and treatment of various poisonings.
3. Appreciate correlation of pharmacology with related medical sciences.

Module 01
10hours

Pharmacology of Drugs Acting on Respiratory System
- Anti-asthmatic drugs.
- Drugs used in the management of COPD.
- Expectorants and antitussives.
- Nasal decongestants.
- Respiratory stimulants.

Pharmacology of Drugs Acting on The Gastrointestinal Tract
- Antiulcer agents.
- Drugs for constipation and diarrhoea.
- Appetite stimulants and suppressants.
- Digestants and carminatives.
- Emetics and anti-emics.

Module 02
10hours

Chemotherapy
- General principles of chemotherapy.
- Sulfonamides and cotrimoxazole.
- Antibiotics- Penicillins, cephalosporins, chloramphenicol, macrolides, quinolones and fluoroquinolins,
- tetracycline and aminoglycosides

Module 03
10hours

Chemotherapy
- Antitubercular agents
- Antileprotic agents
• Antifungal agents
• Antiviral drugs
• Anthelmintics
• Antimalarial drugs
• Antiamoebic agents

Module 04 08hours
Chemotherapy
• Urinary tract infections and sexually transmitted diseases.
• Chemotherapy of malignancy.

Immunopharmacology
• Immunostimulants
• Immunosuppressant
• Protein drugs, monoclonal antibodies, target drugs to antigen, biosimilars

Module 05 07hours
Principles of Toxicology
• Definition and basic knowledge of acute, subacute and chronic toxicity.
• Definition and basic knowledge of genotoxicity, carcinogenicity, teratogenicity and mutagenicity
• General principles of treatment of poisoning
• Clinical symptoms and management of barbiturates, morphine, organophosphorus compound and lead, mercury and arsenic poisoning.

Chronopharmacology
• Definition of rhythm and cycles.
• Biological clock and their significance leading to chronotherapy.

Recommended Books (Latest Editions)
7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
Modern Pharmacology with clinical Applications, by Charles R.Craig & Robert,
Scope: This subject gives the student the knowledge of basic understanding of herbal drug Industry, the quality of raw material, guidelines for quality of herbal drugs, herbal cosmetics, natural sweeteners, nutraceutical etc. The subject also emphasizes on Good Manufacturing Practices (GMP), patenting and regulatory issues of herbal drugs

Objectives: Upon completion of this course, the student should be able to:

1. Understand raw material as source of herbal drugs from cultivation to herbal drug product.
2. Know the WHO and ICH guidelines for evaluation of herbal drugs.
3. Know the herbal cosmetics, natural sweeteners, and nutraceuticals.
4. Appreciate patenting of herbal drugs, GMP.

Module 01

Herbs as Raw Materials
- Definition of herb, herbal medicine, herbal medicinal product, herbal drug preparation.
- Source of Herbs.
- Selection, identification and authentication of herbal materials.
- Processing of herbal raw material.

Biodynamic Agriculture
- Good agricultural practices in cultivation of medicinal plants including Organic farming.
- Pest and Pest management in medicinal plants: Biopesticides/Bioinsecticides.

Indian Systems of Medicine
- Basic principles involved in Ayurveda, Siddha, Unani and Homeopathy
- Preparation and standardization of Ayurvedic formulations viz Aristas and Asawas, Ghutika, Churna, Lehya and Bhasma.

Module 02

Nutraceuticals
- General aspects, Market, growth, scope and types of products available in the market.
- Health benefits and role of Nutraceuticals in ailments like Diabetes, CVS diseases, Cancer, Irritable bowel syndrome and various Gastro intestinal diseases.
- Study of following herbs as health food: Alfalfa, Chicory, Ginger, Fenugreek, Garlic, Honey, Amla, Ginseng, Ashwagandha, Spirulina

Herbal-Drug and Herb-Food Interactions
- General introduction to interaction and classification.
- Study of following drugs and their possible side effects and interactions: Hypericum, kava-kava, Ginkobiloba, Ginseng, Garlic, Pepper & Ephedra.
Module 03

Herbal Cosmetics
- Sources and description of raw materials of herbal origin used via, fixed oils, waxes, gums colours, perfumes, protective agents, bleaching agents, antioxidants in products such as skin care, hair care and oral hygiene products.

Herbal Excipients
- Herbal Excipients – Significance of substances of natural origin as excipients – colorants, sweeteners, binders, diluents, viscosity builders, disintegrants, flavors & perfumes.

Herbal Formulations
- Conventional herbal formulations like syrups, mixtures, tablets, and Novel dosage forms like phytosomes.

Module 04

Evaluation of Drugs
- WHO & ICH guidelines for the assessment of herbal drugs
- Stability testing of herbal drugs.

Patenting and Regulatory Requirements of Natural Products
- Definition of the terms: Patent, IPR, Farmers right, Breeder’s right, Bioprospecting and Biopiracy
- Patenting aspects of Traditional Knowledge and Natural Products. Case study of Curcuma & Neem.

Regulatory Issues
- Regulations in India (ASU DTAB, ASU DCC), Regulation of manufacture of ASU drugs - Schedule Z of Drugs & Cosmetics Act for ASU drugs.

Module 05

General Introduction to Herbal Industry
- Herbal drugs industry: Present scope and future prospects.
- A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India.

Schedule T – Good Manufacturing Practice of Indian systems of Medicine
- Components of GMP (Schedule – T) and its objectives.
- Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records.

Recommended Books: (Latest Editions)

1. Textbook of Pharmacognosy by Trease & Evans.
2. Textbook of Pharmacognosy by Tyler, Brady & Robber.
3. Pharmacognosy by Kokate, Purohit and Gokhale.
4. Essential of Pharmacognosy by Dr.S.H.Ansari.
5. Pharmacognosy & Phytochemistry by V.D.Rangari.

Scope: This subject is designed to impart knowledge and skills of Biopharmaceutics and pharmacokinetics and their applications in pharmaceutical development, design of dose and dosage regimen and in solving the problems arising therein.

Objectives: Upon completion of the course, student shall be able to:

1. Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance.
2. Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination.
3. To understand the concepts of bioavailability and bioequivalence of drug products and their significance.
4. Understand various pharmacokinetic parameters, their significance & applications.

Module 01
Introduction to Biopharmaceutics
Absorption
- Mechanisms of drug absorption through GIT, factors influencing drug absorption though GIT, absorption of drug from Non per oral extra-vascular routes.

Distribution

Module 02
Elimination
- Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non-renal routes of drug excretion of drugs.

Bioavailability and Bioequivalence
- Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, in-vitro drug dissolution models, in-vitro-in-vivo correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.

Module 03
Pharmacokinetics
- Definition and introduction to Pharmacokinetics, Compartment models, Non
compartment models, physiological models, One compartment open model. Intravenous Injection (Bolus). Intravenous infusion. Extra vascular administrations.

- Pharmacokinetics parameters – K_E, t1/2, Vd, AUC, Ka, Clt and CLR - definitions methods of eliminations, understanding of their significance and application.

Module 04 08 Hours

Multicompartment Models

- Two compartment open model. IV bolus.
- Kinetics of multiple dosing, steady state drug levels, calculation of loading and maintenance doses and their significance in clinical settings.

Module 05 07 Hours

Nonlinear Pharmacokinetics

- Introduction.
- Factors causing Non-linearity.
- Michaelis-menton method of estimating parameters, Explanation with example of drugs.

Recommended Books: (Latest Editions)

1. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi.
2. Biopharmaceutics and Pharmacokinetics; By Robert F Notari.
5. Pharmacokinetics: By Milo Glbaldi Donald, R. Mcelc Dekker Inc.
6. Hand Book of Clinical Pharmacokinetics, By Milo Gibaldi and Laurie Prescott by ADIS Health Science Press.
7. Biopharmaceutics; By Swarbrick.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP605T</td>
<td>Pharmaceutical Biotechnology</td>
<td>3 1 -</td>
<td>25 75</td>
<td>1 3</td>
<td>4</td>
</tr>
</tbody>
</table>

Scope: Biotechnology has a long promise to revolutionize the biological sciences and technology. Scientific application of biotechnology in the field of genetic engineering, medicine and fermentation technology makes the subject interesting. Biotechnology is leading to new biological revolutions in diagnosis, prevention and cure of diseases, new and cheaper pharmaceutical drugs. Biotechnology has already produced transgenic crops and animals and the future promises lot more. It is a research-based subject.

Objectives: Upon completion of the subject, student shall be able to

1. Understanding the importance of Immobilized enzymes in Pharmaceutical Industries.
2. Genetic engineering applications in relation to production of pharmaceuticals.
3. Importance of Monoclonal antibodies in Industries.
4. Appreciate the use of microorganisms in fermentation technology.

Module 01
10 Hours

- Brief introduction to Biotechnology with reference to Pharmaceutical Sciences.
- Enzyme Biotechnology- Methods of enzyme immobilization and applications.
- Biosensors- Working and applications of biosensors in Pharmaceutical Industries.
- Brief introduction to Protein Engineering.
- Use of microbes in industry. Production of Enzymes- General consideration - Amylase, Catalase, Peroxidase, Lipase, Protease, Penicillilnase.
- Basic principles of genetic engineering.

Module 02
10 Hours

- Study of cloning vectors, restriction endonucleases and DNA ligase.
- Recombinant DNA technology. Application of genetic engineering in medicine.
- Brief introduction to PCR.

Module 03
10 Hours

- Types of immunity- humoral immunity, cellular immunity.
- Structure of Immunoglobulins.
- Structure and Function of MHC.
- Hypersensitivity reactions, Immune stimulation and Immune suppressions.
- General method of the preparation of bacterial vaccines, toxoids, viral vaccine, antitoxins, serum-immune blood derivatives and other products relative to immunity.
- Storage conditions and stability of official vaccines.
- Hybridoma technology- Production, Purification and Applications.
- Blood products and Plasma Substitutes.

Module 04
08 Hours

Immuno-Blotting Techniques
- ELISA, Western blotting, Southern blotting.
- Genetic organization of Eukaryotes and Prokaryotes.
- Microbial genetics including transformation, transduction, conjugation, plasmids and transposons.
- Introduction to Microbial biotransformation and applications.

Mutation
Types of mutation/mutants.

Module 05
07 Hours

- Fermentation methods and general requirements, study of media, equipments, sterilization methods, aeration process, stirring.
- Large-scale production fermenter design and its various controls.
- Study of the production of - penicillins, citric acid, Vitamin B12, Glutamic acid, Griseofulvin.

Blood Products
- Collection, Processing and Storage of whole human blood, dried human plasma, plasma Substitutes.

Recommended Books (Latest edition)

2. RA Goldshy et. al.,: Kuby Immunology.
Scope: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It deals with the important aspects like cGMP, QC tests, documentation, quality certifications and regulatory affairs.

Objectives: Upon completion of the course, student shall be able to

1. Understand the cGMP aspects in a pharmaceutical industry.
2. Appreciate the importance of documentation.
3. Understand the scope of quality certifications applicable to pharmaceutical industries.
4. Understand the responsibilities of QA & QC departments.

Module 01 10 Hours

Quality Assurance and Quality Management Concepts
 • Definition and concept of Quality control, Quality assurance and GMP.

Total Quality Management (TQM)
 • Definition, elements, philosophies.

ICH Guidelines
 • Purpose, participants, process of harmonization, Brief overview of QSEM, with special emphasis on Q-series guidelines, ICH stability testing guidelines.

Quality By Design (QbD)
 • Definition, overview, elements of QbD program, tools.

ISO 9000 & ISO14000
 • Overview, Benefits, Elements, steps for registration.

NABL Accreditation
 • Principles and procedures.

Module 02 10 Hours

Organization and Personnel
 • Personnel responsibilities, training, hygiene and personal records.

Premises
 • Design, construction and plant layout, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination.

Equipments and Raw Materials
 • Equipment selection, purchase specifications, maintenance, purchase specifications and maintenance of stores for raw materials.
Module 03

Quality Control
- Quality control test for containers, rubber closures and secondary packing materials.

Good Laboratory Practices
- Test and Control Articles.
- Protocol for Conduct of a Nonclinical Laboratory Study.
- Records and Reports.
- Disqualification of Testing Facilities.

Module 04

Complaints
- Complaints and evaluation of complaints, Handling of return good, recalling and waste disposal.

Document Maintenance in Pharmaceutical Industry
- Batch Formula Record, Master Formula Record, SOP, Quality audit, Quality Review and Quality documentation, Reports and documents, distribution records.

Module 05

Calibration and Validation
- Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan.
- Calibration of pH meter, Qualification of UV-Visible spectrophotometer, General principles of Analytical method Validation.

Warehousing
- Good warehousing practice, materials management.

Recommended Books: (Latest Edition)
2. Good Laboratory Practice Regulations, Sandy Weinberg Vol. 69.
5. How to Practice GMP’s – P P Sharma.
9. ICH guidelines, ISO 9000 and 14000 guidelines.
1. Preparation of drugs and intermediates
 - Sulphanilamide
 - 7-Hydroxy, 4-methyl coumarin
 - Chlorobutanol
 - Triphenyl imidazole
 - Tolbutamide
 - Hexamine

2. Assay of drugs
 - Isonicotinic acid hydrazide
 - Chloroquine
 - Metronidazole
 - Dapsone
 - Chlorpheniramine maleate
 - Benzyl penicillin

3. Preparation of medicinally important compounds or intermediates by Microwave irradiation technique.

4. Drawing structures and reactions using chem draw®.

5. Determination of physicochemical properties such as logP, clogP, MR, Molecular weight, Hydrogen bond donors and acceptors for class of drugs course content using drug design software Drug likeliness screening (Lipinskies RO5).

Recommended Books (Latest Editions)

2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.
1. Dose calculation in pharmacological experiments.
2. Antiallergic activity by mast cell stabilization assay.
4. Study of effect of drugs on gastrointestinal motility.
5. Effect of agonist and antagonists on guinea pig ileum.
7. Effect of saline purgative on frog intestine.
8. Insulin hypoglycemic effect in rabbit.
9. Test for pyrogens (rabbit method).
10. Determination of acute oral toxicity (LD50) of a drug from a given data.
11. Determination of acute skin irritation/corrosion of a test substance.
12. Determination of acute eye irritation/corrosion of a test substance.
13. Calculation of pharmacokinetic parameters from a given data.
15. Biostatistics methods in experimental pharmacology (Chi square test, Wilcoxon Signed Rank test).

Experiments are demonstrated by simulated experiments/videos

Recommended Books (Latest Editions)

7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher Modern Pharmacology with clinical Applications, by Charles R.Craig & Robert,
1. To perform preliminary phytochemical screening of crude drugs.
2. Determination of the alcohol content of Asava and Arista.
3. Evaluation of excipients of natural origin.
4. Incorporation of prepared and standardized extract in cosmetic formulations like creams, lotions and shampoos and their evaluation.
5. Incorporation of prepared and standardized extract in formulations like syrups, mixtures and tablets and their evaluation as per Pharmacopoeial requirements.
6. Monograph analysis of herbal drugs from recent Pharmacopoeias.
7. Determination of Aldehyde content.
8. Determination of Phenol content.

Recommended Books: (Latest Editions)

1. Textbook of Pharmacognosy by Trease & Evans.
2. Textbook of Pharmacognosy by Tyler, Brady & Robber.
3. Pharmacognosy by Kokate, Purohit and Gokhale.
4. Essential of Pharmacognosy by Dr.S.H.Ansari.
5. Pharmacognosy & Phytochemistry by V.D.Rangari.
7th SEMESTER
Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart a fundamental knowledge on the principles and instrumentation of spectroscopic and chromatographic technique. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course, the student shall be able to

1. Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis.
2. Understand the chromatographic separation and analysis of drugs.
3. Perform quantitative & qualitative analysis of drugs using various analytical instruments.

Module 01

10 Hours

UV Visible Spectroscopy
- Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert’s law, Derivation and deviations.
- Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors-Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode.
- Applications - Spectrophotometric titrations, Single component and multi component analysis.

Fluorimetry
- Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications.

Module 02

10 Hours

IR spectroscopy
- Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations.
- Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications.

Flame Photometry
- Principle, interferences, instrumentation and applications.

Atomic Absorption Spectroscopy
- Principle, interferences, instrumentation and applications.

Nepheloturbidometry
- Principle, instrumentation and applications.
Module 03 10 Hours

Introduction to chromatography

Adsorption and partition column chromatography
- Methodology, advantages, disadvantages and applications.

Thin layer chromatography
- Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.

Paper Chromatography
- Introduction, methodology, development techniques, advantages, disadvantages and applications.

Electrophoresis
- Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications.

Module 04 08 Hours

Gas Chromatography
- Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications.

High Performance Liquid Chromatography (HPLC)
- Introduction, theory, instrumentation, advantages and applications.

Module 05 07 Hours

Ion exchange chromatography
- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications.

Gel chromatography
- Introduction, theory, instrumentation and applications.

Affinity chromatography
- Introduction, theory, instrumentation and applications.

Recommended Books (Latest Editions)

1. Instrumental Methods of Chemical Analysis by B.K Sharma.
2. Organic spectroscopy by Y.R Sharma.
8. Quantitative Analysis of Drugs by D. C. Garrett.
Scope: This course is designed to impart fundamental knowledge on pharmaceutical product development and translation from laboratory to market.

Objectives: Upon completion of the course, the student shall be able to:

1. Know the process of pilot plant and scale up of pharmaceutical dosage forms.
2. Understand the process of technology transfer from lab scale to commercial batch.
3. Know different Laws and Acts that regulate pharmaceutical industry.
4. Understand the approval process and regulatory requirements for drug products.

Module 01 10 Hours
Pilot Plant Scale up Techniques
- General considerations- including significance of personnel requirements, space requirements, raw materials, Pilot plant scale up considerations for solids, liquid orals, semi solids and relevant documentation, SUPAC guidelines, Introduction to platform technology.

Module 02 10 Hours
Technology Development and Transfer
WHO Guidelines for Technology Transfer (TT)
- Terminology, Technology transfer protocol, Quality risk management, Transfer from R& D to production (Process, packaging and cleaning), Granularit y of TT Process (API, excipients, finished products, packaging materials) Documentation, Premises and equipments, qualification and validation, quality control, analytical method transfer, Approved regulatory bodies and agencies. Commercialization
- Practical aspects and problems (case studies), TT agencies in India - APCTD, NRDC, TIFAC, BCIL, TBSE / SIDBI.

TT Related Documentation
- Confidentiality agreement, licensing, MoUs, legal issues.

Module 03 10 Hours
Regulatory Affairs
- Introduction, Historical overview of Regulatory Affairs, Regulatory authorities
- Role of Regulatory affairs department, Responsibility of Regulatory Affairs Professionals

Regulatory Requirements for Drug Approval
- Drug Development Teams, Non-Clinical Drug Development, Pharmacology, Drug Metabolism and Toxicology.
- General considerations of Investigational New Drug (IND) Application, Investigator’s
Brochure (IB) and New Drug Application (NDA).
- Data Presentation for FDA Submissions, Management of Clinical Studies.

Module 04
08 Hours

Quality Management Systems
- Quality management & Certifications.
- Concept of Quality, Total Quality Management, Quality by Design (QbD).
- Six Sigma concept. Out of Specifications (OOS).
- Change control.
- Introduction to ISO 9000 series of quality systems standards.
- ISO 14000, NABL, GLP.

Module 05
07 Hours

Indian Regulatory Requirements
- Central Drug Standard Control Organization (CDSCO) and State Licensing Authority: Organization, Responsibilities, Certificate of Pharmaceutical Product (COPP), Regulatory requirements and approval procedures for New Drugs.

Recommended Books: (Latest Editions)

Scope: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug information, and therapeutic drug monitoring for improved patient care. In community pharmacy, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable safe medication, patient counselling for improved patient care in the community set up.

Objectives: Upon completion of the course, the student shall be able to

1. Know various drug distribution methods in a hospital.
2. Appreciate the pharmacy stores management and inventory control.
3. Monitor drug therapy of patient through medication chart review and clinical review.
4. Obtain medication history interview and counsel the patients.
5. Identify drug related problems.
7. Interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states.
8. Know pharmaceutical care services.
10. Appreciate the concept of rational drug therapy.

Module 01 10 Hours

Hospital and Its Organization
- Definition, Classification of hospital.
- Primary, Secondary and Tertiary hospitals.
- Classification based on clinical and non- clinical basis.
- Organization Structure of a Hospital, and Medical staffs involved in the hospital and their functions.

Hospital Pharmacy and Its Organization
- Definition, functions of hospital pharmacy, Organization structure, Location, Layout and staff requirements, and Responsibilities and functions of hospital pharmacists.

Adverse Drug Reaction
- Classifications –Excessive pharmacological effects, secondary pharmacological effects, idiosyncrasy, allergic drug reactions, genetically determined toxicity, and toxicity following sudden withdrawal of drugs.

Drug Interaction
- Beneficial interactions, adverse interactions, and pharmacokinetic drug
interactions.
- Methods for detecting drug interactions.
- Spontaneous case reports and record linkage studies.
- Adverse drug reaction reporting and management.

Community Pharmacy
- Organization and structure of retail and wholesale drug store, types and design.
- Legal requirements for establishment and maintenance of a drug store.
- Dispensing of proprietary products, maintenance of records of retail and wholesale drug store.

Module 02
10 Hours

Drug Distribution System in A Hospital
- Dispensing of drugs to inpatients, types of drug distribution systems, charging policy and labelling, Dispensing of drugs to ambulatory patients, and Dispensing of controlled drugs.

Hospital formulary
- Definition, contents of hospital formulary, Differentiation of hospital formulary and Drug list, preparation and revision, and addition and deletion of drug from hospital formulary.
- Therapeutic Drug Monitoring
- Need for Therapeutic Drug Monitoring, Factors to be considered during the Therapeutic Drug Monitoring, and Indian scenario for Therapeutic Drug Monitoring.

Medication Adherence
- Causes of medication non-adherence, pharmacist role in the medication adherence, and monitoring of patient medication adherence.

Patient Medication History Interview
- Need for the patient medication history interview, medication interview forms.

Community Pharmacy Management
- Financial, materials, staff, and infrastructure requirements.

Module 03
10 Hours

Pharmacy and therapeutic committee
- Organization, functions, Policies of the pharmacy and therapeutic committee in including drugs into formulary, inpatient and outpatient prescription, automatic stop order, and emergency drug list preparation.

Drug information services
- Drug and Poison information centre, Sources of drug information, Computerised services, and storage and retrieval of information.

Patient Counselling
- Definition of patient counselling; steps involved in patient counselling, and Special cases that require the pharmacist.
Education and Training Program in the Hospital
- Role of pharmacist in the education and training program.
- Internal and external training program.
- Services to the nursing homes/clinics.
- Code of ethics for community pharmacy.
- Role of pharmacist in the interdepartmental communication and community health education.

Prescribed Medication Order and Communication Skills
- Prescribed medication order- interpretation and legal requirements.
- Communication skills- communication with prescribers and patients.

Module 04 08 Hours

Budget Preparation and Implementation
- Budget preparation and implementation

Clinical Pharmacy
- Introduction to Clinical Pharmacy, Concept of clinical pharmacy, functions and responsibilities of clinical pharmacist, Drug therapy monitoring - medication chart review, clinical review, pharmacist intervention, Ward round participation, Medication history and Pharmaceutical care.
- Dosing pattern and drug therapy based on Pharmacokinetic & disease pattern.

Over The Counter (OTC) Sales
- Introduction and sale of over the counter.
- Rational use of common over the counter medications.

Module 05 07 Hours

Drug Store Management and Inventory Control
- Organisation of drug store, types of materials stocked and storage conditions.
- Purchase and inventory control: principles, purchase procedure, purchase order, procurement and stocking, Economic order quantity, Reorder quantity level.
- Methods used for the analysis of the drug expenditure.

Investigational Use of Drugs
- Description, principles involved, classification, control, identification, role of hospital pharmacist, advisory committee.

Interpretation of Clinical Laboratory Tests
- Blood chemistry, haematology, and urinalysis.

Recommended Books (Latest Edition)
Limited.

5. Scott LT. Basic skills in interpreting laboratory data, 4thed. American Society of Health System Pharmacists Inc.

Journals

1. Therapeutic drug monitoring. ISSN: 0163-4356

2. Journal of pharmacy practice. ISSN : 0974-8326

3. American journal of health system pharmacy. ISSN: 1535-2900 (online)

4. Pharmacy times (Monthly magazine)
Course Details

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP704T</td>
<td>Novel Drug Delivery Systems</td>
<td>3 L 1 T -</td>
<td>25</td>
<td>1 Int.</td>
<td>4 Ext.</td>
</tr>
</tbody>
</table>

Scope: This subject is designed to impart basic knowledge on the area of novel drug delivery systems.

Objectives: Upon completion of the course, student shall be able

1. To understand various approaches for development of novel drug delivery systems.
2. To understand the criteria for selection of drugs and polymers for the development of Novel drug delivery systems, their formulation and evaluation

Module 01

Controlled Drug Delivery Systems

- Introduction, terminology/definitions and rationale, advantages, disadvantages, selection of drug candidates.
- Approaches to design controlled release formulations based on diffusion, dissolution and ion exchange principles.
- Physicochemical and biological properties of drugs relevant to controlled release formulations.

Polymers

- Introduction, classification, properties, advantages and application of polymers in formulation of controlled release drug delivery systems.

Module 02

Microencapsulation

- Definition, advantages and disadvantages, microspheres /microcapsules, microparticles, methods of microencapsulation, applications.

Mucosal Drug Delivery system

- Introduction, Principles of bioadhesion/ mucoadhesion, concepts, advantages and disadvantages, transmucosal permeability and formulation considerations of buccal delivery systems.

Implantable Drug Delivery System

- Introduction, advantages and disadvantages, concept of implants and osmotic pump.

Module 03

Transdermal Drug Delivery Systems

- Introduction, Permeation through skin, factors affecting permeation, permeation enhancers, basic components of TDDS, formulation approaches.

Gastroretentive Drug Delivery Systems

- Introduction, advantages, disadvantages, approaches for GRDDS – Floating, high-density systems, inflatable and gastro-adhesive systems and their applications.
Nasopulmonary Drug Delivery System
- Introduction to Nasal and Pulmonary routes of drug delivery, Formulation of Inhalers (dry powder and metered dose), nasal sprays, nebulizers.

Module 04 08 Hours
Targeted Drug Delivery
- Concepts and approaches advantages and disadvantages, introduction to liposomes, niosomes, nanoparticles, monoclonal antibodies and their applications.

Module 05 07 Hours
Ocular Drug Delivery Systems
- Introduction, intra ocular barriers and methods to overcome – Preliminary study, ocular formulations and ocuserts.

Intrauterine Drug Delivery Systems
- Introduction, advantages and disadvantages, development of intra uterine devices (IUDs) and applications.

Recommended Books: (Latest Editions)

Journals
1. Indian Journal of Pharmaceutical Sciences (IPA).
2. Indian Drugs (IDMA).
1. Determination of absorption maxima and effect of solvents on absorption maxima of organic compounds.
2. Estimation of dextrose by Colorimetry.
3. Estimation of sulfanilamide by Colorimetry.
4. Simultaneous estimation of ibuprofen and paracetamol by UV Spectroscopy.
5. Assay of paracetamol by UV- Spectrophotometry.
7. Study of quenching of fluorescence.
8. Determination of sodium by Flame Photometry.
10. Determination of chlorides and sulphates by Nepheloturbidometry.
11. Separation of amino acids by Paper Chromatography.
12. Separation of sugars by Thin Layer Chromatography.
13. Separation of plant pigments by Column Chromatography.
14. Demonstration experiment on HPLC.
15. Demonstration experiment on Gas Chromatography.

Recommended Books (Latest Editions)

1. Instrumental Methods of Chemical Analysis by B.K Sharma.
2. Organic spectroscopy by Y.R Sharma.
8. Quantitative Analysis of Drugs by D. C. Garrett.
Every candidate shall undergo practice school for a period of 150 hours evenly distributed throughout the semester.

The student shall choose any one of the domains for practice school declared by the program committee from time to time.

At the end of the practice school, every student shall submit a printed report (in triplicate) on the practice school he/she attended (not more than 25 pages).

Along with the exams of 7th semester, the report submitted by the student, knowledge and skills acquired by the student through practice school shall be evaluated by the subject experts at college level and grade point shall be awarded.
8th SEMESTER
Scope: To understand the applications of Biostatics in Pharmacy. This subject deals with descriptive statistics, Graphics, Correlation, Regression, logistic regression Probability theory, Sampling technique, Parametric tests, Non Parametric tests, ANOVA, Introduction to Design of Experiments, Phases of Clinical trials and Observational and Experimental studies, SPSS, R and MINITAB statistical software’s, analyzing the statistical data using Excel.

Objectives: Upon completion of the course, the student shall be able to

1. Know the operation of M.S. Excel, SPSS, R and MINITAB®, DoE (Design of Experiment).
2. Know the various statistical techniques to solve statistical problems.
3. Appreciate statistical techniques in solving the problems.

Module 01

Introduction
- Statistics, Biostatistics, Frequency distribution.

Measures of central tendency
- Mean, Median, Mode- Pharmaceutical examples.

Measures of Dispersion
- Dispersion, Range, standard deviation, Pharmaceutical problems.

Correlation
- Definition, Karl Pearson’s coefficient of correlation, Multiple correlation - Pharmaceuticals examples.

Module 02

Regression
- Curve fitting by the method of least squares, fitting the lines $y = a + bx$ and $x = a + by$, Multiple regression, standard error of regression- Pharmaceutical Examples.

Probability
- Definition of probability, Binomial distribution, Normal distribution, Poisson’s distribution, properties – problems ,Sample, Population, large sample, small sample, Null hypothesis, alternative hypothesis, sampling, essence of sampling, types of sampling, Type I Error, Type II Error ,Standard error of mean (SEM)- Pharmaceutical examples

Parametric test
- t-test (Sample, Pooled or Unpaired and Paired) , ANOVA, (One way and Two way), Least Significance difference.
Module 03
Non-Parametric Tests
- Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test, Friedman Test

Introduction to Research
- Need for research, Need for design of Experiments, Experiential Design Technique, and plagiarism

Graphs
- Histogram, Pie Chart, Cubic Graph, response surface plot, Counter Plot graph

Designing the methodology
- Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohorts studies, Observational studies, Experimental studies, Designing clinical trial, various phases.

Module 04
08 Hours

- Blocking and confounding system for Two-level factorials.

Regression Modelling
- Hypothesis testing in Simple and Multiple regression models.
- Introduction to Practical components of Industrial and Clinical Trials Problems.
- Statistical Analysis Using Excel, SPSS, MINITAB®, DESIGN OF EXPERIMENTS, R - Online Statistical Software’s to Industrial and Clinical trial approach.

Module 05
07 Hours

Design and Analysis of experiments

Factorial Design
- Definition, 22, 23 design. Advantage of factorial design.

Response Surface methodology
- Central composite design, Historical design, Optimization Techniques.

Recommended Books (Latest edition)
Scope: The purpose of this course is to introduce to students a number of health issues and their challenges. This course also introduced a number of national health programmes. The roles of the pharmacist in these contexts are also discussed.

Objectives: After the successful completion of this course, the student shall be able to

1. Acquire high consciousness/realization of current issues related to health and pharmaceutical problems within the country and worldwide.
2. Have a critical way of thinking based on current healthcare development.
3. Evaluate alternative ways of solving problems related to health and pharmaceutical issues.

Module 01 10 Hours

Concept of Health and Disease
- Definition, concepts and evaluation of public health.
- Understanding the concept of prevention and control of disease, social causes of diseases and social problems of the sick.

Social and Health Education
- Food in relation to nutrition and health, Balanced diet, Nutritional deficiencies, Vitamin deficiencies, Malnutrition and its prevention.

Sociology and Health
- Socio cultural factors related to health and disease, Impact of urbanization on health and disease, Poverty and health.

Hygiene and Health
- Personal hygiene and health care; avoidable habits.

Module 02 10 Hours

Preventive Medicine
- General principles of prevention and control of diseases such as cholera, SARS, Ebola virus, influenza, acute respiratory infections, malaria, chicken guinea, dengue, lymphatic filariasis, pneumonia, hypertension, diabetes mellitus, cancer, drug addiction-drug substance abuse.

Module 03 10 Hours

National Health Programs, Its Objectives, Functioning and Outcome of The Following
Module 04 08 Hours

- National health intervention programme for mother and child, National family welfare programme.
- National tobacco control programme.
- National Malaria Prevention Program.
- National programme for the health care for the elderly.
- Social health programme; role of WHO in Indian national program.

Module 05 07 Hours

- Community services in rural, urban and school health.
- Functions of PHC.
- Improvement in rural sanitation.
- National urban health mission.
- Health promotion and education in school.

Recommended Books (Latest edition)

5. Park Textbook of Preventive and Social Medicine, K Park, ISBN-14: 9788190128285, BANARSIDAS BHANOT PUBLISHERS.
6. Community Pharmacy Practice, Ramesh Adepu, BSP Publishers, Hyderabad

Recommended Journals

Scope: The pharmaceutical industry not only needs highly qualified researchers, chemists and, technical people, but also requires skilled managers who can take the industry forward by managing and taking the complex decisions which are imperative for the growth of the industry. The Knowledge and Know-how of marketing management groom the people for taking a challenging role in Sales and Product management.

Objective

1. The course aims to provide an understanding of marketing concepts and techniques and their applications in the pharmaceutical industry.

Module 01 10 Hours

Marketing
- Definition, general concepts and scope of marketing; Distinction between marketing & selling; Marketing environment; Industry and competitive analysis; analyzing consumer-buying behaviour; industrial buying behaviour.

Pharmaceutical Market
- Quantitative and qualitative aspects; size and composition of the market; demographic descriptions and socio-psychological characteristics of the consumer; market segmentation & targeting. Consumer profile; Motivation and prescribing habits of the physician; patients' choice of physician and retail pharmacist.

Analyzing the Market
- Role of market research.

Module 02 10 Hours

Product Decision
- Classification, product line and product mix decisions, product life cycle, and product portfolio analysis.
- Product positioning.
- New product decisions.
- Product branding, packaging and labelling decisions,
- Product management in pharmaceutical industry.

Module 03 10 Hours

Promotion
- Methods, determinants of promotional mix, promotional budget.
- An overview of personal selling, advertising, direct mail, journals, sampling, retailing, medical exhibition, public relations, online promotional techniques for OTC Products.
Module 04
10 Hours

Pharmaceutical Marketing Channels
- Designing channel, channel members, selecting the appropriate channel, conflict in channels, physical distribution management: Strategic importance, tasks in physical distribution management.

Professional Sales Representative (PSR)
- Duties of PSR, purpose of detailing, selection and training, supervising, norms for customer calls, motivating, evaluating, compensation and future prospects of the PSR.

Module 05
10 Hours

Pricing
- Meaning, importance, objectives, determinants of price; pricing methods and strategies, issues in price management in pharmaceutical industry.
- An overview of DPCO (Drug Price Control Order) and NPPA (National Pharmaceutical Pricing Authority).

Emerging Concepts in Marketing
- Vertical & Horizontal Marketing.
- Rural Marketing.
- Consumerism.
- Industrial Marketing.
- Global Marketing.

Recommended Books: (Latest Editions)
Scope: This course is designed to impart the fundamental knowledge on the regulatory requirements for approval of new drugs, and drug products in regulated markets of India & other countries like US, EU, Japan, Australia, UK etc. It prepares the students to learn in detail on the regulatory requirements, documentation requirements, and registration procedures for marketing the drug products.

Objectives: Upon completion of the subject, student shall be able to

1. Know about the process of drug discovery and development
2. Know the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
3. Know the regulatory approval process and their registration in Indian and international markets

Module 01 10Hours

New Drug Discovery and Development

- Stages of drug discovery.
- Drug development process, pre-clinical studies, non-clinical activities, clinical studies.
- Innovator and generics.
- Concept of generics.
- Generic drug product development.

Module 02 10Hours

Regulatory Approval Process

- Approval processes and timelines involved in Investigational New Drug (IND).
- New Drug Application (NDA).
- Abbreviated New Drug Application (ANDA).
- Changes to an approved NDA / ANDA.

Regulatory Authorities and Agencies

- Overview of regulatory authorities of India, United States, European Union, Australia, Japan, Canada (Organization structure and types of applications).

Module 03 10Hours

Registration of Indian Drug Product in Overseas Market

- Procedure for export of pharmaceutical products, Technical documentation, Drug Master
Module 04

Clinical Trials
- Developing clinical trial protocols, Institutional Review Board / Independent Ethics committee- formation and working procedures, Informed consent process and procedures, GCP obligations of Investigators, sponsors & Monitors, Managing and Monitoring clinical trials.

Pharmacovigilance
- Safety monitoring in clinical trials.

Module 05

Regulatory Concepts

Recommended books (Latest edition)

1. Drug Regulatory Affairs by Sachin Itkar, Dr. N.S. Vyawahare, Nirali Prakashan.
Scope: This paper will provide an opportunity for the student to learn about development of pharmacovigilance as a science, basic terminologies used in pharmacovigilance, global scenario of Pharmacovigilance, train students on establishing pharmacovigilance programme in an organization, various methods that can be used to generate safety data and signal detection. This paper also develops the skills of classifying drugs, diseases and adverse drug reactions.

Objectives: At completion of this paper it is expected that students will be able to (know, do, and appreciate):

1. Why drug safety monitoring is important?
2. History and development of Pharmacovigilance.
3. National and international scenario of pharmacovigilance.
4. Dictionaries, coding and terminologies used in pharmacovigilance.
7. Adverse drug reaction reporting systems and communication in pharmacovigilance.
8. Methods to generate safety data during pre clinical, clinical and post approval phases of drugs’ life cycle.
10. Pharmacovigilance Program of India (PvPI) requirement for ADR reporting in India.
11. ICH guidelines for ICSR, PSUR, expedited reporting, pharmacovigilance planning.
12. CIOMS requirements for ADR reporting.
13. Writing case narratives of adverse events and their quality.

Module 01

Introduction to Pharmacovigilance
- History and development of Pharmacovigilance.
- Importance of safety monitoring of Medicine.
- WHO international drug monitoring programme.
- Pharmacovigilance Program of India(PvPI).

Introduction to Adverse Drug Reactions
- Definitions and classification of ADRs.
- Detection and reporting.
- Methods in Causality assessment.
- Severity and seriousness assessment.
- Predictability and preventability assessment.
- Management of adverse drug reactions.

Basic Terminologies Used In Pharmacovigilance
- Terminologies of adverse medication related events.
• Regulatory terminologies.

Module 02 10 Hours

Drug and Disease Classification
• Anatomical, therapeutic and chemical classification of drugs.
• International classification of diseases.
• Daily-defined doses.
• International Non proprietary Names for drugs.

Drug Dictionaries and Coding In Pharmacovigilance
• WHO adverse reaction terminologies.
• MedDRA and Standardised MedDRA queries.
• WHO drug dictionary.
• Eudravigilance medicinal product dictionary.
• Information resources in pharmacovigilance
• Basic drug information resources.
• Specialised resources for ADRs.

Establishing Pharmacovigilance Programme
• Establishing in a hospital.
• Establishment & operation of drug safety department in industry.
• Contract Research Organisations (CROs).
• Establishing a national programme.

Module 03 10 Hours

Vaccine Safety Surveillance
• Vaccine Pharmacovigilance.
• Vaccination failure.
• Adverse events following immunization.

Pharmacovigilance Methods
• Passive surveillance – Spontaneous reports and case series.
• Stimulated reporting.
• Active surveillance – Sentinel sites, drug event monitoring and registries.
• Comparative observational studies – Cross sectional study, case control study and cohort study.
• Targeted clinical investigations.

Communication in Pharmacovigilance
• Effective communication in Pharmacovigilance.
• Communication in Drug Safety Crisis management.
• Communicating with Regulatory Agencies, Business Partners, Healthcare facilities & Media.

Module 04 08 Hours

Safety Data Generation
• Pre clinical phase.
• Clinical phase.
• Post approval phase (PMS).
ICH Guidelines for Pharmacovigilance

- Organization and objectives of ICH.
- Expedited reporting.
- Individual case safety reports.
- Periodic safety update reports.
- Post approval expedited reporting.
- Pharmacovigilance planning.
- Good clinical practice in pharmacovigilance studies.

Module 05
07 Hours

Pharmacogenomics of adverse drug reactions

- Genetics related ADR with example focusing PK parameters.

Drug safety evaluation in special population

- Paediatrics
- Pregnancy and lactation
- Geriatrics

CIOMS

- CIOMS Working Groups
- CIOMS Form

CDSCO (India) and Pharmacovigilance

- D&C Act and Schedule Y.
- Differences in Indian and global pharmacovigilance requirements.

Recommended Books (Latest edition)

2. Practical Drug Safety from A to Z By Barton Cobert, Pierre Biron, Jones and Bartlett Publishers.
10. Text Book of Medicine by Yashpal Munjal.
3=7297.
15. http://cdsco.nic.in/
17. http://www.ipc.gov.in/PvPI/pv_home.html
Scope: In this subject, the student learns about the various methods and guidelines for evaluation and standardization of herbs and herbal drugs. The subject also provides an opportunity for the student to learn cGMP, GAP and GLP in traditional system of medicines.

Objectives: Upon completion of the subject, student shall be able to

1. Know WHO guidelines for quality control of herbal drugs.
2. Know Quality assurance in herbal drug industry.
3. Know the regulatory approval process and their registration in Indian and international markets.
4. Appreciate EU and ICH guidelines for quality control of herbal drugs.

Module 01 10 Hours

- Basic tests for drugs – Pharmaceutical substances, Medicinal plants materials and dosage forms.
- WHO guidelines for quality control of herbal drugs. Evaluation of commercial crude drugs intended for use.

Module 02 10 Hours

- Quality assurance in herbal drug industry of cGMP, GAP, GMP and GLP in traditional system of medicine.
- WHO Guidelines on current good manufacturing Practices (cGMP) for Herbal Medicines
- WHO Guidelines on GACP for Medicinal Plants.

Module 03 10 Hours

- EU and ICH guidelines for quality control of herbal drugs.
- Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicines.

Module 04 08 Hours

- Stability testing of herbal medicines.
- Application of various chromatographic techniques in standardization of herbal products.
- Preparation of documents for new drug application and export registration
- GMP requirements and Drugs & Cosmetics Act provisions.
- Regulatory requirements for herbal medicines.
- WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems.
- Comparison of various Herbal Pharmacopoeias.
- Role of chemical and biological markers in standardization of herbal products.

Recommended Books: (Latest Editions)

1. Pharmacognosy by Trease and Evans.
2. Pharmacognosy by Kokate, Purohit and Gokhale.
5. EMEA. Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products.
Scope: This subject is designed to provide detailed knowledge of rational drug design process and various techniques used in rational drug design process.

Objectives: Upon completion of the course, the student shall be able to understand

1. Design and discovery of lead molecules.
2. The role of drug design in drug discovery process.
3. The concept of QSAR and docking.
4. Various strategies to develop new drug like molecules.
5. The design of new drug molecules using molecular modeling software.

Module 01 10 Hours

Introduction to Drug Discovery and Development
- Stages of drug discovery and development.

Lead Discovery and Analog Based Drug Design
- Rational approaches to lead discovery based on traditional medicine, Random screening, Non-random screening, serendipitous drug discovery, lead discovery based on drug metabolism, lead discovery based on clinical observation.

Analog-Based Drug Design
- Bioisosterism, Classification, Bioisosteric replacement.
- Any three case studies.

Module 02 10 Hours

Quantitative Structure Activity Relationship (QSAR)
- SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters, experimental and theoretical approaches for the determination of physicochemical parameters such as Partition coefficient, Hammet’s substituent constant and Taft’s steric constant.
- Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like COMFA and COMSIA.

Module 03 10 Hours

Molecular Modeling and Virtual Screening Techniques
Virtual Screening Techniques
- Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening.
Molecular Docking

- Rigid docking, flexible docking, manual docking, Docking based screening.
- De novo drug design.

Module 04 08 Hours

- Informatics & Methods in drug design.
- Introduction to Bioinformatics, chemoinformatics.
- ADME databases, chemical, biochemical and pharmaceutical databases.

Module 05 07 Hours

Molecular Modeling

- Introduction to molecular mechanics and quantum mechanics.
- Energy Minimization methods.
- Conformational Analysis, global conformational minima determination.

Recommended Books (Latest Editions)

Scope: Cell biology is a branch of biology that studies cells – their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function. This is done both on a microscopic and molecular level. Cell biology research encompasses both the great diversity of single-celled organisms like bacteria and protozoa, as well as the many specialized cells in multi-cellular organisms such as humans, plants, and sponges.

Objectives: Upon completion of the subject, student shall be able to

1. Summarize cell and molecular biology history.
2. Summarize cellular functioning and composition.
3. Describe the chemical foundations of cell biology.
4. Summarize the DNA properties of cell biology.
5. Describe protein structure and function.
6. Describe cellular membrane structure and function.
7. Describe basic molecular genetic mechanisms.
8. Summarize the cell cycle.

Module 01 10 Hours

- Cell and Molecular Biology: Definitions theory and basics and Applications.
- Cell and Molecular Biology: History and Summation.
- Properties of cells and cell membrane.
- Prokaryotic versus Eukaryotic.
- Cellular Reproduction.
- Chemical Foundations – an Introduction and Reactions (Types).

Module 02 10 Hours

- DNA and the Flow of Molecular Information,
- DNA Functioning.
- DNA and RNA.
- Types of RNA.
- Transcription and Translation.

Module 03 10 Hours

- Proteins: Defined and Amino Acids.
- Protein Structure.
- Regularities in Protein Pathways.
- Cellular Processes.
Positive Control and significance of Protein Synthesis.

Module 04
08 Hours

- Science of Genetics.
- Transgenics and Genomic Analysis.
- Cell Cycle analysis.
- Mitosis and Meiosis.
- Cellular Activities and Checkpoints.

Recommended Books (latest edition)

3. Pelczar, Chan Kreig, Microbiology, Tata McGraw Hill.
5. Rose: Industrial Microbiology.
7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
8. Peppler: Microbial Technology.
13. RA Goldshy et. al., Kuby Immunology.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP809ET</td>
<td>Cosmetic Science</td>
<td>3 1 -</td>
<td>25 75</td>
<td>1 3 4</td>
<td>4</td>
</tr>
</tbody>
</table>

Module 01 10 Hours

- Classification of cosmetic and cosmeceutical products
- Definition of cosmetics as per Indian and EU regulations, Evolution of cosmeceuticals from cosmetics, cosmetics as quasi and OTC drugs

Cosmetic Excipients
- Surfactants, rheology modifiers, humectants, emollients, preservatives.
- Classification and application.

Skin
- Basic structure and function of skin.

Hair
- Basic structure of hair.
- Hair growth cycle.

Oral Cavity
- Common problem associated with teeth and gums.

Module 02 10 Hours

Principles of Formulation and Building Blocks of Skin Care Products
- Face wash, Moisturizing cream, Cold Cream, Vanishing cream and their advantages and disadvantages.
- Application of these products in formulation of cosmeceuticals.

Antiperspants & deodorants
- Actives & mechanism of action.

Principles of formulation and building blocks of Hair care products
- Conditioning shampoo, Hair conditioner, anti-dandruff shampoo.
- Hair oils.
- Chemistry and formulation of Para-ylene diamine based hair dye.

Principles of Formulation and Building Blocks of Oral Care Products
- Toothpaste for bleeding gums, sensitive teeth.
- Teeth whitening, Mouthwash.

Module 03 10 Hours

Sun Protection
- Classification of Sunscreens and SPF.

Role of Herbs in Cosmetics

Skin Care
- Aloe and turmeric
Hair Care
- Henna and amla.

Oral Care
- Neem and clove

Analytical Cosmetics
- BIS specification and analytical methods for shampoo, skin-cream and toothpaste.

Module 04 08 Hours

Principles of Cosmetic Evaluation
- Principles of sebumeter, corneometer.
- Measurement of TEWL
- Skin Color
- Hair tensile strength
- Hair combing properties
- Soaps, and syndet bars.
- Evolution and skin benefits.

Module 05 07 Hours

- Oily and dry skin, causes leading to dry skin, skin moisturiation.
- Basic understanding of the terms Comedogenic, dermatitis.

Cosmetic Problems Associated With Hair and Scalp
- Dandruff, Hair fall causes.

Cosmetic Problems Associated With Skin
- Blemishes, wrinkles, acne, prickly heat and body odor.

Antiperspirants and Deodorants
- Actives and mechanism of action.

Recommended Books (latest edition)
Scope: This subject is designed to impart the basic knowledge of preclinical studies in experimental animals including design, conduct and interpretations of results.

Objectives: Upon completion of the course, the student shall be able to

1. Appreciate the applications of various commonly used laboratory animals.
2. Appreciate and demonstrate the various screening methods used in preclinical research.
3. Appreciate and demonstrate the importance of biostatistics and research methodology.
4. Design and execute a research hypothesis independently.

Module 01 08 Hours

Laboratory Animals
- Study of CPCSEA and OECD guidelines for maintenance, breeding and conduct of experiments on laboratory animals.

Common Lab Animals
- Description and applications of different species and strains of animals.
- Popular transgenic and mutant animals.

Techniques for Collection of Blood
- Common routes of drug administration in laboratory animals.
- Techniques of blood collection and euthanasia.

Module 02 11 Hours

Preclinical Screening Models

Introduction
- Dose selection, calculation and conversions, preparation of drug solution/suspensions, grouping of animals and importance of sham negative and positive control groups.
- Rationale for selection of animal species and sex for the study.

Study of Screening Animal Models For
- Diuretics, nootropics, anti-Parkinson’s, antiasthmatics

Preclinical screening models
- CNS activity- analgesic, antipyretic, anti-inflammatory, general anaesthetics, sedative and hypnotics, antipsychotic, antidepressant, antiepileptic, anti-parkinsonism, alzheimer’s disease.
Module 03 08 Hours

Preclinical Screening Models for ANS Activity
 • Sympathomimetics, sympatholytics, parasympathomimetics, parasympatholytics.
 • Skeletal muscle relaxants.
 • Drugs acting on eye.
 • Local anaesthetics.

Module 04 08 Hours

Preclinical Screening Models for CVS Activity
 • Antihypertensives, diuretics, antiarrhythmic, antidysepidemic, anti aggregatory, coagulants, and anticoagulants.

Preclinical Screening Models for Other Important Drugs
 • Antiulcer, antidiabetic, anticancer and antiasthmatics.

Module 05 10 Hours

Research Methodology and Bio-Statistics
 • Selection of research topic, review of literature, research hypothesis and study design.
 • Pre-clinical data analysis and interpretation using Students 't' test.
 • One-way ANOVA.
 • Graphical representation of data.

Recommended Books (latest edition)
 3. CPCSEA guidelines for laboratory animal facility.
 4. Drug discovery and Evaluation by Vogel H.G.
 6. Introduction to biostatistics and research methods by PSS Sundar Rao and J Richard.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP811ET</td>
<td>Advanced Instrumentation Techniques</td>
<td>3 1 -</td>
<td>25 75</td>
<td>1 3</td>
<td>4</td>
</tr>
</tbody>
</table>

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart advanced knowledge on the principles and instrumentation of spectroscopic and chromatographic hyphenated techniques. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course, the student shall be able to

1. Understand the advanced instruments used and its applications in drug analysis.
2. Understand the chromatographic separation and analysis of drugs.
3. Understand the calibration of various analytical instruments
4. Know analysis of drugs using various analytical instruments.

Module 01
10 Hours

Nuclear Magnetic Resonance Spectroscopy
- Principles of H-NMR and C-NMR, chemical shift, factors affecting chemical shift, coupling constant, Spin - spin coupling, relaxation, instrumentation and applications

Mass Spectrometry
- Principles, fragmentation, ionization techniques – Electron impact, chemical ionization, MALDI, FAB, Analyzers-Time of flight and Quadrupole, instrumentation, applications.

Module 02
10 Hours

Thermal Methods of Analysis
- Principles, instrumentation and applications of Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC)

X-Ray Diffraction Methods
- Origin of X-rays, basic aspects of crystals, X- ray Crystallography, rotating crystal technique, single crystal diffraction, powder diffraction, structural elucidation and applications.

Module 03
10 Hours

Calibration and Validation as Per ICH And USFDA Guidelines
Calibration of Following Instruments
- Electronic balance, UV-Visible spectrophotometer, IR spectrophotometer, Fluorimeter, Flame Photometer, HPLC and GC.
Module 04
08 Hours

Radioimmuno Assay
- Importance, various components, Principle, different methods, Limitation and Applications of Radioimmuno assay

Extraction Techniques
- General principle and procedure involved in the solid phase extraction and liquid-liquid extraction.

Module 05
07 Hours

Hyphenated Techniques
- LC-MS/MS
- GC-MS/MS
- HPTLC-MS

Recommended Books (Latest Editions)

1. Instrumental Methods of Chemical Analysis by B.K Sharma.
2. Organic spectroscopy by Y.R Sharma.
8. Quantitative Analysis of Drugs by D. C. Garrett.
Course Details

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Load</th>
<th>Marks</th>
<th>Exam (hrs)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP812ET</td>
<td>Dietary Supplements & Nutraceuticals</td>
<td>3</td>
<td>1-</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>75</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Scope: This subject covers foundational topic that are important for understanding the need and requirements of dietary supplements among different groups in the population.

Objective: This module aims to provide an understanding of the concepts behind the theoretical applications of dietary supplements. By the end of the course, students should be able to

1. Understand the need of supplements by the different group of people to maintain healthy life.
2. Understand the outcome of deficiencies in dietary supplements.
3. Appreciate the components in dietary supplements and the application.
4. Appreciate the regulatory and commercial aspects of dietary supplements including health claims.

Module 01 07 Hours

- Definitions of Functional foods, Nutraceuticals and Dietary supplements. Classification of Nutraceuticals, Health problems and diseases that can be prevented or cured by Nutraceuticals i.e. weight control, diabetes, cancer, heart disease, stress, osteoarthritis, hypertension etc.
- Public health nutrition, maternal and child nutrition, nutrition and ageing, nutrition education in community.
- Source, Name of marker compounds and their chemical nature, Medicinal uses and health benefits of following used as nutraceuticals/functional foods: Spirulina, Soyabean, Ginseng, Garlic, Broccoli, Gingko, Flaxseeds.

Module 02 15 Hours

Phytochemicals as Nutraceuticals

Occurrence and characteristic features (chemical nature medicinal benefits) of following

- Carotenoids- α and β-Carotene, Lycopene, Xanthophylls, leutin.
- Sulfides: Diallyl sulfides, Allyl trisulfide.
- Polyphenolics: Resveretrol.
- Flavonoids- Rutin, Naringin, Quercitin, Anthocyanidins, catechins, Flavones.
- Prebiotics / Probiotics.: Fructo oligosaccharides, Lacto bacillus.
- Phyto estrogens: Isoflavones, daidzein, Geebustin, lignans.
- Tocopherols.
- Proteins, vitamins, minerals, cereal, vegetables and beverages as functional foods: oats, wheat bran, rice bran, seafoods, coffee, tea and the like.

Module 03 07 Hours

- Introduction to free radicals: Free radicals, reactive oxygen species, production of free
radicals in cells, damaging reactions of free radicals on lipids, proteins, Carbohydrates, nucleic acids.

- Dietary fibres and complex carbohydrates as functional food ingredients.

Module 04
10 Hours

- Free radicals in Diabetes mellitus, Inflammation, Ischemic reperfusion injury, Cancer, Atherosclerosis, Free radicals in brain metabolism and pathology, kidney damage, muscle damage.
- Free radicals involvement in other disorders.
- Free radicals theory of ageing.
- Antioxidants: Endogenous antioxidants – enzymatic and nonenzymatic antioxidant defence, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione Vitamin C, Vitamin E, α- Lipoic acid, melatonin
- Synthetic antioxidants: Butylated hydroxy Toluene, Butylated hydroxy Anisole.
- Functional foods for chronic disease prevention.

Module 05
06 Hours

- Effect of processing, storage and interactions of various environmental factors on the potential of nutraceuticals.
- Regulatory Aspects; FSSAI, FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods.
- Pharmacopoeial Specifications for dietary supplements and nutraceuticals.

Recommended Books (Latest Editions)

1. Dietetics by Sri Lakshmi.
2. Role of dietary fibres and neutraceuticals in preventing diseases by K.T Agusti and P.Faizal: BS Puplication.
3. Advanced Nutritional Therapies by Cooper. K.A.
4. The Food Pharmacy by Jean Carper, Simon & Schuster, UK Ltd.
5. Prescription for Nutritional Healing by James F. Balch and Phyllis A. Balch , Avery Publishing Group, NY.
Module 01

- Introduction to pharmaceutical product development, objectives, regulations related to preformulation, formulation development, stability assessment, manufacturing and quality control testing of different types of dosage forms.

Module 02

- An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories:
 a) Solvents and solubilizers
 b) Cyclodextrins and their applications
 c) Non-ionic surfactants and their applications
 d) Polyethylene glycols and sorbitols
 e) Suspending and emulsifying agents
 f) Semi solid excipients

Module 03

- An advanced study of Pharmaceutical Excipients in pharmaceutical product development with a special reference to the following categories:
 a) Tablet and capsule excipients
 b) Directly compressible vehicles
 c) Coat materials
 d) Excipients in parenteral and aerosols products
 e) Excipients for formulation of NDDS
 - Selection and application of excipients in pharmaceutical formulations with specific industrial applications.

Module 04

- Optimization techniques in pharmaceutical product development.
- A study of various optimization techniques for pharmaceutical product development with specific examples.
- Optimization by factorial designs and their applications.
- A study of QbD and its application in pharmaceutical product development.
- Selection and quality control testing of packaging materials for pharmaceutical product development- regulatory considerations.

Recommended Books (Latest editions)

1. Pharmaceutical Statistics Practical and Clinical Applications by Stanford Bolton, Charles Bon; Marcel Dekker Inc.
3. Pharmaceutical Dosage Forms, Tablets, Volume II, edited by Herbert A. Lieberman and Leon Lachman; Marcel Dekker, Inc.
13. Advanced Review Articles related to the topics.
• All the students shall undertake a project under the supervision of a teacher and submit a report.
• The area of the project shall directly relate any one of the elective subject opted by the student in 8th semester.
• The project shall be carried out in-group not exceeding five in number.
• The project report shall be submitted in triplicate (typed & bound copy not less than 25 pages).
• The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s).
• Students shall be evaluated in groups for four hours (i.e., about half an hour for a group of five students).
• The projects shall be evaluated as per the criteria given below:

Evaluation of Dissertation Book

<table>
<thead>
<tr>
<th>Objective(s) of the work done</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 Marks</td>
</tr>
<tr>
<td>Methodology adopted</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Results and Discussions</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Conclusions and Outcomes</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>75 Marks</td>
</tr>
</tbody>
</table>

Evaluation of Presentation

<table>
<thead>
<tr>
<th>Presentation of work</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication skills</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Question and answer skills</td>
<td>30 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>75 Marks</td>
</tr>
</tbody>
</table>

Note: The 75 marks assigned to the dissertation book shall be same for all the students in a group. However, the 75 marks assigned for presentation shall be awarded based on the performance of individual students in the given criteria.